

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931670/publications.pdf Version: 2024-02-01

ZIVI CE

#	Article	IF	CITATIONS
1	16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. Advanced Materials, 2019, 31, e1902210.	11.1	497
2	Ecoâ€Compatible Solventâ€Processed Organic Photovoltaic Cells with Over 16% Efficiency. Advanced Materials, 2019, 31, e1903441.	11.1	445
3	Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nature Photonics, 2015, 9, 520-524.	15.6	412
4	Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49, 1653-1687.	18.7	364
5	Spinâ€Coated Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes Based on Bipolar Triphenylamineâ€Benzimidazole Derivatives. Advanced Functional Materials, 2008, 18, 584-590.	7.8	256
6	Benzotriazole-Based Acceptor and Donors, Coupled with Chlorination, Achieve a High <i>V</i> _{OC} of 1.24 V and an Efficiency of 10.5% in Fullerene-Free Organic Solar Cells. Chemistry of Materials, 2019, 31, 3941-3947.	3.2	236
7	Tuning the properties of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H ₂ /O ₂ fuel cells. Energy and Environmental Science, 2018, 11, 435-446.	15.6	225
8	Smallâ€Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices. Advanced Optical Materials, 2018, 6, 1800512.	3.6	201
9	Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Advanced Materials, 2018, 30, 1703005.	11.1	182
10	Small-molecular donor guest achieves rigid 18.5% and flexible 15.9% efficiency organic photovoltaic via fine-tuning microstructure morphology. Joule, 2021, 5, 2395-2407.	11.7	166
11	Allâ€Solutionâ€Processed Metalâ€Oxideâ€Free Flexible Organic Solar Cells with Over 10% Efficiency. Advanced Materials, 2018, 30, e1800075.	11.1	165
12	13.34 % Efficiency Nonâ€Fullerene Allâ€6mallâ€Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors via a Fluorination Strategy. Angewandte Chemie - International Edition, 2020, 59, 2808-2815.	7.2	161
13	Novel "Hot Exciton―Blue Fluorophores for High Performance Fluorescent/Phosphorescent Hybrid White Organic Light-Emitting Diodes with Superhigh Phosphorescent Dopant Concentration and Improved Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2015, 7, 7869-7877.	4.0	128
14	Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy, 2021, 82, 105770.	8.2	128
15	Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis. Advanced Energy Materials, 2020, 10, 2000136.	10.2	120
16	Significant Enhancement of Polymer Solar Cell Performance via Side-Chain Engineering and Simple Solvent Treatment. Chemistry of Materials, 2013, 25, 3196-3204.	3.2	118
17	Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices. Macromolecular Rapid Communications, 2019, 40, e1800570.	2.0	114
18	Simultaneous Bottomâ€Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Smallâ€Molecule Electrolytes. Advanced Materials, 2019, 31, e1903239.	11.1	89

#	Article	IF	CITATIONS
19	16.55% efficiency ternary organic solar cells enabled by incorporating a small molecular donor. Journal of Materials Chemistry A, 2019, 7, 25894-25899.	5.2	88
20	Solvent Annealing Enables 15.39% Efficiency Allâ€Smallâ€Molecule Solar Cells through Improved Molecule Interconnection and Reduced Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2100800.	10.2	86
21	π onjugated Small Molecules Modified SnO ₂ Layer for Perovskite Solar Cells with over 23% Efficiency. Advanced Energy Materials, 2021, 11, 2101416.	10.2	84
22	Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy and Environmental Science, 2022, 15, 1563-1572.	15.6	83
23	Crumple Durable Ultraflexible Organic Solar Cells with an Excellent Powerâ€perâ€Weight Performance. Advanced Functional Materials, 2021, 31, 2102694.	7.8	78
24	MoS ₂ Quantum Dots with a Tunable Work Function for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 26916-26923.	4.0	77
25	Synergistic Interface Energy Band Alignment Optimization and Defect Passivation toward Efficient and Simpleâ€Structured Perovskite Solar Cell. Advanced Science, 2020, 7, 1902656.	5.6	76
26	Over 14% efficiency nonfullerene all-small-molecule organic solar cells enabled by improving the ordering of molecular donors <i>via</i> side-chain engineering. Journal of Materials Chemistry A, 2020, 8, 7405-7411.	5.2	69
27	Alkali Cation Doping for Improving the Structural Stability of 2D Perovskite in 3D/2D PSCs. Nano Letters, 2020, 20, 1240-1251.	4.5	68
28	Simple, Robust, and Going More Efficient: Recent Advance on Electron Transport Layerâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900248.	10.2	62
29	Graphene:silver nanowire composite transparent electrode based flexible organic solar cells with 13.4% efficiency. Journal of Materials Chemistry A, 2019, 7, 22021-22028.	5.2	59
30	Asymmetric Substitution of Endâ€Groups Triggers 16.34% Efficiency for Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	59
31	Dual Functional Electronâ€Selective Contacts Based on Silicon Oxide/Magnesium: Tailoring Heterointerface Band Structures while Maintaining Surface Passivation. Advanced Energy Materials, 2018, 8, 1702921.	10.2	48
32	Bendable and foldable flexible organic solar cells based on Ag nanowire films with 10.30% efficiency. Journal of Materials Chemistry A, 2019, 7, 3737-3744.	5.2	47
33	Efficient polymer solar cells based on the synergy effect of a novel non-conjugated small-molecule electrolyte and polar solvent. Journal of Materials Chemistry A, 2016, 4, 2530-2536.	5.2	46
34	Oxide Neuromorphic Transistors Gated by Polyvinyl Alcohol Solid Electrolytes with Ultralow Power Consumption. ACS Applied Materials & amp; Interfaces, 2019, 11, 28352-28358.	4.0	46
35	Recent advances in high-efficiency organic solar cells fabricated by eco-compatible solvents at relatively large-area scale. APL Materials, 2020, 8, .	2.2	45
36	High-Efficiency Thermal-Annealing-Free Organic Solar Cells Based on an Asymmetric Acceptor with Improved Thermal and Air Stability. ACS Applied Materials & Interfaces, 2020, 12, 57271-57280.	4.0	44

#	Article	IF	CITATIONS
37	Improved Efficiency in All-Small-Molecule Organic Solar Cells with Ternary Blend of Nonfullerene Acceptor and Chlorinated and Nonchlorinated Donors. ACS Applied Materials & Interfaces, 2019, 11, 44528-44535.	4.0	43
38	Bilayered Oxideâ€Based Cognitive Memristor with Brainâ€Inspired Learning Activities. Advanced Electronic Materials, 2019, 5, 1900439.	2.6	43
39	Schottky/pâ€n Cascade Heterojunction Constructed by Intentional nâ€Type Doping Perovskite Toward Efficient Electron Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800274.	3.1	43
40	Highly efficient non-fullerene polymer solar cells enabled by novel non-conjugated small-molecule cathode interlayers. Journal of Materials Chemistry A, 2018, 6, 6327-6334.	5.2	42
41	A Transferâ€Printed, Stretchable, and Reliable Strain Sensor Using PEDOT:PSS/Ag NW Hybrid Films Embedded into Elastomers. Advanced Materials Technologies, 2018, 3, 1800030.	3.0	42
42	lonic liquid-assisted perovskite crystal film growth for high performance planar heterojunction perovskite solar cells. RSC Advances, 2016, 6, 97848-97852.	1.7	41
43	The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chemical Science, 2017, 8, 3750-3758.	3.7	41
44	Fine-Tuning the Dipole Moment of Asymmetric Non-Fullerene Acceptors Enabling Efficient and Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 23983-23992.	4.0	41
45	Highly efficient and solution-processed iridium complex for single-layer yellow electrophosphorescent diodes. Journal of Materials Chemistry, 2012, 22, 23005.	6.7	40
46	Highly efficient single- and multi-emission-layer fluorescent/phosphorescent hybrid white organic light-emitting diodes with â^¼20% external quantum efficiency. Journal of Materials Chemistry C, 2015, 3, 9233-9239.	2.7	40
47	Over 14% Efficiency Folding-Flexible ITO-free Organic Solar Cells Enabled by Eco-friendly Acid-Processed Electrodes. IScience, 2020, 23, 100981.	1.9	40
48	Ultra-flexible light-permeable organic solar cells for the herbal photosynthetic growth. Nano Energy, 2021, 86, 106044.	8.2	40
49	Interface bonding engineering of a transparent conductive electrode towards highly efficient and mechanically flexible ITO-free organic solar cells. Journal of Materials Chemistry A, 2019, 7, 11460-11467.	5.2	39
50	Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter, 2022, 5, 1877-1889.	5.0	38
51	Effective management of intramolecular charge transfer to obtain from blue to violet-blue OLEDs based on a couple of phenanthrene isomers. Dyes and Pigments, 2015, 122, 264-271.	2.0	36
52	Passivating Surface Defects of <i>n</i> ‣nO ₂ Electron Transporting Layer by InP/ZnS Quantum Dots: Toward Efficient and Stable Organic Solar Cells. Advanced Electronic Materials, 2020, 6, 1901245.	2.6	35
53	Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216Âcm ² . Progress in Photovoltaics: Research and Applications, 2019, 27, 264-274.	4.4	34
54	Highly-efficient hybrid white organic light-emitting diodes based on a high radiative exciton ratio deep-blue emitter with improved concentration of phosphorescent dopant. RSC Advances, 2015, 5, 32298-32306.	1.7	33

#	Article	IF	CITATIONS
55	Improved phase stability of <scp>CsPbI₂Br</scp> perovskite by released microstrain toward highly efficient and stable solar cells. InformaÄnÃ-Materiály, 2021, 3, 1431-1444.	8.5	31
56	Improving Performance of Nonfullerene Organic Solar Cells over 13% by Employing Silver Nanowires-Doped PEDOT:PSS Composite Interface. ACS Applied Materials & Interfaces, 2019, 11, 42447-42454.	4.0	30
57	Organic Light-Emitting Diodes Based on Conjugation-Induced Thermally Activated Delayed Fluorescence Polymers: Interplay Between Intra- and Intermolecular Charge Transfer States. Frontiers in Chemistry, 2019, 7, 688.	1.8	29
58	Simple-Structured Blue Thermally Activated Delayed Fluorescence Emitter for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiency of over 20%. ACS Applied Materials & Interfaces, 2021, 13, 12305-12312.	4.0	27
59	A novel polymer donor based on dithieno[2,3- <i>d</i> :2′,3′- <i>d</i> ′′]benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene for highly effic polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 2646-2652.	ien s t2	26
60	18.01% Efficiency organic solar cell and 2.53% light utilization efficiency semitransparent organic solar cell enabled by optimizing PM6:Y6 active layer morphology. Science China Chemistry, 2022, 65, 1615-1622.	4.2	26
61	Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT:PSS transparent anodes. Science China Chemistry, 2019, 62, 500-505.	4.2	25
62	Synergistic Effect of Lewis Base Polymers and Graphene in Enhancing the Efficiency of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3928-3936.	2.5	25
63	Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells. RSC Advances, 2016, 6, 57793-57798.	1.7	24
64	Nonâ€Doped Skyâ€Blue OLEDs Based on Simple Structured AIE Emitters with High Efficiencies at Low Driven Voltages. Chemistry - an Asian Journal, 2017, 12, 2189-2196.	1.7	24
65	Investigating the Trade-Off between Device Performance and Energy Loss in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 29124-29131.	4.0	24
66	Efficient bipolar AIE emitters for high-performance nondoped OLEDs. Journal of Materials Chemistry C, 2020, 8, 11771-11777.	2.7	24
67	Imidazolium Ionic Liquid as Organic Spacer for Tuning the Excitonic Structure of 2D Perovskite Materials. ACS Energy Letters, 2020, 5, 3617-3627.	8.8	24
68	High efficiency ternary organic solar cells enabled by compatible dual-donor strategy with planar conjugated structures. Science China Chemistry, 2020, 63, 917-923.	4.2	24
69	Highly efficient polymer solar cells using a non-conjugated small-molecule zwitterion with enhancement of electron transfer and collection. Journal of Materials Chemistry A, 2016, 4, 14944-14948.	5.2	21
70	Multifunctional emitters for efficient simplified non-doped blueish green organic light emitting devices with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5, 6527-6536.	2.7	21
71	Low-voltage protonic/photonic synergic coupled oxide phototransistor. Organic Electronics, 2019, 71, 31-35.	1.4	21
72	Two star-shaped small molecule donors based on benzodithiophene unit for organic solar cells. Chinese Chemical Letters, 2022, 33, 247-251.	4.8	21

#	Article	IF	CITATIONS
73	Saturated deep-blue emitter based on a spiro[benzoanthracene–fluorene]-linked phenanthrene derivative for non-doped organic light-emitting diodes. New Journal of Chemistry, 2014, 38, 4696-4701.	1.4	20
74	Efficiency enhancement of organic solar cells enabled by interface engineering of sol-gel zinc oxide with an oxadiazole-based material. Organic Electronics, 2020, 76, 105483.	1.4	20
75	Interfacial engineering strategy based on polymer modification to regulate the residual stress in CsPbI2Br based perovskite solar cells. Chemical Engineering Journal, 2022, 446, 137307.	6.6	20
76	Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction. Applied Physics Letters, 2012, 100, .	1.5	19
77	Highly efficient polymer solar cells employing natural chlorophyllin as a cathode interfacial layer. Journal of Materials Chemistry A, 2018, 6, 464-468.	5.2	19
78	Annealing-free efficient organic solar cells <i>via</i> an alkylbenzene side-chain strategy of small-molecule electron acceptors. Journal of Materials Chemistry A, 2020, 8, 22155-22162.	5.2	19
79	Understanding the Effect of Sequential Deposition Processing for High-Efficient Organic Photovoltaics to Harvest Sunlight and Artificial Light. ACS Applied Materials & Interfaces, 2021, 13, 20405-20416.	4.0	19
80	Ti ₃ C ₂ T _{<i>x</i>} /PEDOT:PSS Composite Interface Enables over 17% Efficiency Non-fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45789-45797.	4.0	19
81	A symmetric nonpolar blue AlEgen as nondoped fluorescent OLED emitter with low efficiency roll-off. Organic Electronics, 2020, 78, 105574.	1.4	18
82	Integrated linker-regulation and ring-fusion engineering for efficient additive-free non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12516-12526.	2.7	18
83	High-Performance Polymer Solar Cells Employing Rhodamines as Cathode Interfacial Layers. ACS Applied Materials & Interfaces, 2017, 9, 27083-27089.	4.0	17
84	Anthradithiophene-benzothiadiazole-based small molecule donors for organic solar cells. New Journal of Chemistry, 2013, 37, 3627.	1.4	16
85	Achieving 18.14% Efficiency of Ternary Organic Solar Cells with Alloyed Nonfullerene Acceptor. Small Structures, 2021, 2, 2100099.	6.9	16
86	Significant influence of halogenation on the energy levels and molecular configurations of polymers in DTBDT-based polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1244-1252.	3.2	15
87	Intermolecular n-Doping Nonconjugated Polymer Cathode Interfacial Materials for Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 2238-2245.	2.5	15
88	Polymer Featuring Thermally Activated Delayed Fluorescence as Emitter in Light-Emitting Electrochemical Cells. Journal of Physical Chemistry Letters, 2020, 11, 6227-6234.	2.1	15
89	Oxygen-induced defect-healing and photo-brightening of halide perovskite semiconductors: science and application. Journal of Materials Chemistry A, 2021, 9, 4379-4414.	5.2	15
90	Achieving 10% efficiency in non-fullerene all-small-molecule organic solar cells without extra treatments. Journal of Materials Chemistry A, 2021, 9, 10427-10436.	5.2	15

. –

#	ARTICLE	IF	CITATIONS
91	Crystallinity modulation of donors by heteroatom side-chain engineering and solvent additive achieving 14.3% all-small-molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 9635-9642.	5.2	15
92	Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 10154-10160.	5.2	14
93	Rational tuning of intermolecular and intramolecular interactions enabling high-efficiency indoor organic photovoltaics. Nano Energy, 2022, 99, 107414.	8.2	14
94	13.5% flexible organic solar cells achieved by robust composite ITO/PEDOT:PSS electrodes. Materials Today Energy, 2019, 14, 100334.	2.5	13
95	Synthesis, crystal structure, and polymerization of butterfly-shaped thieno[3,2-b]thiophene oligomers. New Journal of Chemistry, 2013, 37, 1189.	1.4	12
96	A Methodological Study on Tuning the Thermally Activated Delayed Fluorescent Performance by Molecular Constitution in Acridine–Benzophenone Derivatives. Chemistry - an Asian Journal, 2018, 13, 1187-1191.	1.7	12
97	High-efficiency robust organic solar cells using transfer-printed PEDOT:PSS electrodes through interface bonding engineering. Materials Chemistry Frontiers, 2019, 3, 901-908.	3.2	12
98	Facile synthesized benzo[1,2-b:4,5-b']difuran based copolymer for both fullerene and non-fullerene organic solar cells. Polymer, 2019, 172, 391-397.	1.8	12
99	A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells. Science China Chemistry, 2021, 64, 281-292.	4.2	12
100	Modulation of the Fluorination Site on Side-Chain Thiophene Improved Efficiency in All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 33234-33241.	4.0	12
101	Observation of tunable two-photon induced excited-state and three-photon absorption phenomena by structure in oligomerfluorene derivatives. Applied Physics A: Materials Science and Processing, 2011, 105, 891-895.	1.1	11
102	Performance and stability studies of inverted polymer solar cells with TiO2 film as a buffer layer. Applied Physics A: Materials Science and Processing, 2014, 114, 429-434.	1.1	11
103	Efficient deep blue emitter based on the integration of phenanthroimidazole, triphenylamine and tetraphenylethene for organic light emitting devices. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 359, 87-92.	2.0	11
104	Synthesis and characterization of polyelectrolytes based on benzotriazole backbone. Colloid and Polymer Science, 2018, 296, 1-9.	1.0	11
105	Efficient ternary organic solar cells based on a twin spiro-type non-fullerene acceptor. Science Bulletin, 2019, 64, 1087-1094.	4.3	11
106	13.34 % Efficiency Nonâ€Fullerene Allâ€Smallâ€Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors via a Fluorination Strategy. Angewandte Chemie, 2020, 132, 2830-2837.	1.6	11
107	Conjugation-Induced Thermally Activated Delayed Fluorescence: Photophysics of a Carbazole-Benzophenone Monomer-to-Tetramer Molecular Series. Journal of Physical Chemistry A, 2021, 125, 1345-1354.	1.1	11
108	Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells. Chinese Chemical Letters, 2022, 33, 4659-4663.	4.8	11

#	Article	IF	CITATIONS
109	Benzothieno[2,3-b]thiophene semiconductors: synthesis, characterization and applications in organic field-effect transistors. Journal of Materials Chemistry C, 2014, 2, 8804-8810.	2.7	10
110	Multi-channel interface dipole of hyperbranched polymers with quasi-immovable hydrion to modification of cathode interface for high-efficiency polymer solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 1044-1054.	4.4	9
111	Highly Efficient Non-Fullerene Organic Solar Cells Using 4,8-Bis((2-ethylhexyl)oxy)benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Based Polymers as Additives. Macromolecules, 2018, 51, 4032-4039.	2.2	9
112	Significant Efficiency Improvement Enabled by CdSe/ZnS Quantum Dot Modifier in Organic Solar Cells. Solar Rrl, 2019, 3, 1900117.	3.1	9
113	Organic solar cells based on non-fullerene acceptors of nine fused-ring by modifying end groups. Organic Electronics, 2020, 81, 105662.	1.4	9
114	Efficient Electron Transport Layer-Free Perovskite Solar Cells Enabled by Discontinuous Polar Molecular Films: A Story of New Materials and Old Ideas?. ACS Sustainable Chemistry and Engineering, 2021, 9, 936-943.	3.2	9
115	Synthesis and photovoltaic properties of small molecule electron acceptors with twin spiro-type core structure. Dyes and Pigments, 2019, 168, 197-204.	2.0	8
116	A simple and effective method via PH1000 modified Ag-Nanowires electrode enable efficient flexible nonfullerene organic solar cells. Organic Electronics, 2021, 94, 106172.	1.4	8
117	Converting thermally activated delayed fluorescence into hybridized local and charge-transfer via an addition acceptor moiety. Organic Electronics, 2022, 100, 106365.	1.4	8
118	Reducible fabrication cost for P3HT-based organic solar cells by using one-step synthesized novel fullerene derivative. Solar Energy Materials and Solar Cells, 2017, 159, 172-178.	3.0	6
119	Efficient Enhancement of Electron Transport and Collection Capability in PTB7:PC 71 BMâ€based Solar Cells Enabled by Sulforhodamine Cathode Interlayers. Chemistry - an Asian Journal, 2019, 14, 1472-1476.	1.7	5
120	Enhanced Thermal Stability of Inverted Polymer Solar Cells with Pentacene. Israel Journal of Chemistry, 2015, 55, 1028-1033.	1.0	4
121	Synthesis, characterization and photovoltaic properties of three new 3,4-dithienyl-substituted polythiophene derivatives. Polymer Journal, 2016, 48, 101-110.	1.3	4
122	Thermally Stable Highâ€Performance Polymer Solar Cells Enabled by Interfacial Engineering. ChemSusChem, 2018, 11, 2429-2435.	3.6	4
123	Bipolar fluorophores based on intramolecular charge-transfer moieties of sulfone for nondoped deep blue solution-processed organic light-emitting diodes. Dyes and Pigments, 2020, 176, 108242.	2.0	4
124	TADF Molecule as an Interfacial Layer with Cascade Energy Alignment Enabling High Open-Circuit Voltage for 3D/2D Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11112-11120.	2.5	4
125	Theoretical calculation on relationship between molecular structure and band gap of benzo[1,2-b:4,5-b \$\$'\$\$ ′]dithiophene based homopolymer. Journal of Mathematical Chemistry, 2014, 52, 2507-2519.	0.7	3
126	HOMO energy level regulation of novel conjugated copolymers for polymer solar cells. New Journal of Chemistry, 2015, 39, 6548-6554.	1.4	3

ZIYI GE

#	Article	IF	CITATIONS
127	A new conjugated polymer PPV-PCN: synthesis, characterization, and applications. Polymer Bulletin, 2015, 72, 117-133.	1.7	3
128	Triphenylvinyl anthracene based emitter for non-doped blue light emitting devices with unusual emission behavior. Optical Materials, 2018, 79, 8-11.	1.7	3
129	Highly efficient ultraviolet light-emitting organosoluble polyimide. RSC Advances, 2016, 6, 70008-70011.	1.7	2
130	Enhanced efficiency of organic solar cells via Si-based non-conjugated small-molecule electrolyte as cathode interlayer. Organic Electronics, 2020, 85, 105863.	1.4	2
131	Thermally Activated Delayed Fluorescent (TADF) Monoâ€Polymeric OLED with Higher EQE over Its TADF Repeating Unit. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2

Perovskite Solar Cells: Simultaneous Bottomâ€Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Smallâ€Molecule Electrolytes (Adv. Mater.) Tj ETQq0 0 ØrrgBT /Oværlock 10 [–] 132