Brian C Vanderven

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular Mycobacterium tuberculosis Exploits Host-derived Fatty Acids to Limit Metabolic Stress. Journal of Biological Chemistry, 2013, 288, 6788-6800.	1.6	352
2	Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology, 2019, 19, 291-304.	10.6	285
3	Novel Inhibitors of Cholesterol Degradation in Mycobacterium tuberculosis Reveal How the Bacterium's Metabolism Is Constrained by the Intracellular Environment. PLoS Pathogens, 2015, 11, e1004679.	2.1	245
4	Immune activation of the host cell induces drug tolerance in <i>Mycobacterium tuberculosis</i> both in vitro and in vivo. Journal of Experimental Medicine, 2016, 213, 809-825.	4.2	169
5	The macrophage marches on its phagosome: dynamic assays of phagosome function. Nature Reviews Immunology, 2009, 9, 594-600.	10.6	168
6	Mycobacterium tuberculosis Wears What It Eats. Cell Host and Microbe, 2010, 8, 68-76.	5.1	166
7	Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. ELife, 2017, 6, .	2.8	137
8	Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathogens and Disease, 2018, 76, .	0.8	127
9	Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Current Opinion in Microbiology, 2016, 29, 30-36.	2.3	118
10	Pathway Profiling in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2011, 286, 43668-43678.	1.6	89
11	Intraphagosomal Measurement of the Magnitude and Duration of the Oxidative Burst. Traffic, 2009, 10, 372-378.	1.3	84
12	<i>Mycobacterium tuberculosis</i> requires glyoxylate shunt and reverse methylcitrate cycle for lactate and pyruvate metabolism. Molecular Microbiology, 2019, 112, 1284-1307.	1.2	74
13	The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. ELife, 2019, 8, .	2.8	56
14	Intraphagosomal measurement of the magnitude and duration of the oxidative burst Traffic, 2009, 10, 372-8.	1.3	48
15	Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation. Journal of Biological Chemistry, 2017, 292, 12436-12448.	1.6	46
16	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> in the Macrophage. Microbiology Spectrum, 2016, 4, .	1.2	35
17	Comparing the Metabolic Capabilities of Bacteria in the Mycobacterium tuberculosis Complex. Microorganisms, 2019, 7, 177.	1.6	27
18	Chemical activation of adenylyl cyclase Rv1625c inhibits growth of <i>Mycobacterium tuberculosis</i> on cholesterol and modulates intramacrophage signaling. Molecular Microbiology, 2017, 105, 294-308.	1.2	26

BRIAN C VANDERVEN

#	Article	IF	CITATIONS
19	Dynamic Quantitative Assays of Phagosomal Function. Current Protocols in Immunology, 2013, 102, 14.34.1-14.34.14.	3.6	25
20	Magnesium depletion triggers production of an immune modulating diterpenoid in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2011, 79, 1594-1601.	1.2	16
21	Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis. Scientific Reports, 2017, 7, 72.	1.6	16
22	Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Communications Biology, 2022, 5, .	2.0	13
23	Development of a novel, cellâ€based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 751-760.	1.1	11
24	Transcriptional response to the host cell environment of a multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Scientific Reports, 2021, 11, 3199.	1.6	11
25	Pharmacological and genetic activation of cAMP synthesis disrupts cholesterol utilization in Mycobacterium tuberculosis. PLoS Pathogens, 2022, 18, e1009862.	2.1	11
26	Reductive Power Generated by Mycobacterium leprae Through Cholesterol Oxidation Contributes to Lipid and ATP Synthesis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 709972.	1.8	10
27	Flow Cytometric Quantification of Fatty Acid Uptake by Mycobacterium tuberculosis in Macrophages. Bio-protocol, 2018, 8, .	0.2	7
28	2-N-Arylthiazole inhibitors of Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3987-3991.	1.0	4
29	The Sculpting of the <i>Mycobacterium tuberculosis</i> Genome by Host Cell–Derived Pressures. Microbiology Spectrum, 2014, 2, .	1.2	3
30	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> in the Macrophage. , 0, , 635-652.		3
31	Cholesterol Metabolism in Mycobacterium tuberculosis: Chewing Through the Fat. FASEB Journal, 2012, 26, 222.2.	0.2	Ο
32	The Sculpting of the Mycobacterium tuberculosis Genome by Host Cell-Derived Pressures. , 0, , 727-745.		0