Arshad Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931047/publications.pdf

Version: 2024-02-01

535685 466096 1,131 41 17 citations h-index papers

32 g-index 42 42 42 2123 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols. Molecular Diversity, 2022, 26, 2535-2548.	2.1	3
2	Emerging natural product based alternative therapeutics for tuberculosis., 2022,, 453-471.		0
3	Human Macrophages Exhibit GM-CSF Dependent Restriction of Mycobacterium tuberculosis Infection via Regulating Their Self-Survival, Differentiation and Metabolism. Frontiers in Immunology, 2022, 13, .	2.2	3
4	Human M1 macrophages express unique innate immune response genes after mycobacterial infection to defend against tuberculosis. Communications Biology, 2022, 5, 480.	2.0	14
5	Functional and structural characterization of Hyp730, a highly conserved and dormancyâ€specific hypothetical membrane protein. MicrobiologyOpen, 2021, 10, e1154.	1.2	1
6	A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Reports Medicine, 2021, 2, 100372.	3.3	16
7	Human monocyte-derived macrophage responses to M. tuberculosis differ by the host's tuberculosis, diabetes or obesity status, and are enhanced by rapamycin. Tuberculosis, 2021, 126, 102047.	0.8	7
8	Intrinsic Interferon Signaling Regulates the Cell Death and Mesenchymal Phenotype of Glioblastoma Stem Cells. Cancers, 2021, 13, 5284.	1.7	14
9	GM-CSF Dependent Differential Control of Mycobacterium tuberculosis Infection in Human and Mouse Macrophages: Is Macrophage Source of GM-CSF Critical to Tuberculosis Immunity?. Frontiers in Immunology, 2020, 11, 1599.	2.2	17
10	NOD2/RIG-I Activating Inarigivir Adjuvant Enhances the Efficacy of BCG Vaccine Against Tuberculosis in Mice. Frontiers in Immunology, 2020, 11 , 592333 .	2.2	15
11	Human mesenchymal stem cell based intracellular dormancy model of Mycobacterium tuberculosis. Microbes and Infection, 2020, 22, 423-431.	1.0	9
12	Emerging Prevention and Treatment Strategies to Control COVID-19. Pathogens, 2020, 9, 501.	1.2	22
13	An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. Npj Vaccines, 2019, 4, 34.	2.9	36
14	Commentary: Bettering BCG: a tough task for a TB vaccine?. Frontiers in Immunology, 2019, 10, 2195.	2.2	O
15	Macrophage heterogeneity and plasticity in tuberculosis. Journal of Leukocyte Biology, 2019, 106, 275-282.	1.5	87
16	Interactions of Mycobacterium tuberculosis with Human Mesenchymal Stem Cells., 2019,, 95-111.		3
17	Pathogenesis and Animal Models of Post-Primary (Bronchogenic) Tuberculosis, A Review. Pathogens, 2018, 7, 19.	1.2	28
18	Increased Immunogenicity Through Autophagy. , 2018, , 35-54.		4

#	Article	IF	CITATIONS
19	Pattern recognition receptors and coordinated cellular pathways involved in tuberculosis immunopathogenesis: Emerging concepts and perspectives. Molecular Immunology, 2017, 87, 240-248.	1.0	36
20	Analysis of host-pathogen modulators of autophagy during <i>Mycobacterium Tuberculosis</i> infection and therapeutic repercussions. International Reviews of Immunology, 2017, 36, 271-286.	1.5	14
21	Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Scientific Reports, 2017, 7, 15010.	1.6	51
22	Supramolecular Peptide Nanofibers Engage Mechanisms of Autophagy in Antigen-Presenting Cells. ACS Omega, 2017, 2, 9136-9143.	1.6	17
23	Prophylactic Sublingual Immunization with Mycobacterium tuberculosis Subunit Vaccine Incorporating the Natural Killer T Cell Agonist Alpha-Galactosylceramide Enhances Protective Immunity to Limit Pulmonary and Extra-Pulmonary Bacterial Burden in Mice. Vaccines, 2017, 5, 47.	2.1	19
24	Emerging role of mesenchymal stem cells during tuberculosis: The fifth element in cell mediated immunity. Tuberculosis, 2016, 101, S45-S52.	0.8	19
25	159: Amnioinfusion induced autophagy and apoptosis in amniotic epithelial cells (AEC): a novel mechanism for preterm premature rupture of membranes (PPROM) after in-utero myelomeningocele (MMC) repair. American Journal of Obstetrics and Gynecology, 2016, 214, S102-S103.	0.7	0
26	104: Altered amniotic fluid induces autophagy and cell death that leads to preterm birth after fetoscopic laser surgery (FLS) for twin-twin transfusion syndrome (TTTS). American Journal of Obstetrics and Gynecology, 2015, 212, S69.	0.7	0
27	BCG vaccine mediated reduction in the MHC-II expression of macrophages and dendritic cells is reversed by activation of Toll-like receptors 7 and 9. Cellular Immunology, 2014, 287, 53-61.	1.4	41
28	Autophagy Regulates Phagocytosis by Modulating the Expression of Scavenger Receptors. Immunity, 2013, 39, 537-547.	6.6	164
29	Nitrite Reductase NirBD Is Induced and Plays an Important Role during <i>In Vitro</i> Dormancy of Mycobacterium tuberculosis. Journal of Bacteriology, 2013, 195, 4592-4599.	1.0	47
30	Nitrate reduction pathways in mycobacteria and their implications during latency. Microbiology (United Kingdom), 2012, 158, 301-307.	0.7	34
31	The fbpA/sapM Double Knock Out Strain of Mycobacterium tuberculosis Is Highly Attenuated and Immunogenic in Macrophages. PLoS ONE, 2012, 7, e36198.	1.1	43
32	Cutting Edge: Nicastrin and Related Components of \hat{I}^3 -Secretase Generate a Peptide Epitope Facilitating Immune Recognition of Intracellular Mycobacteria, through MHC Class II-Dependent Priming of T Cells. Journal of Immunology, 2011, 187, 5495-5499.	0.4	12
33	Bactericidal activity of 2-nitroimidazole against the active replicating stage of Mycobacterium bovis BCG and Mycobacterium tuberculosis with intracellular efficacy in THP-1 macrophages. International Journal of Antimicrobial Agents, 2008, 32, 40-45.	1.1	47
34	Presence of a functional nitrate assimilation pathway in Mycobacterium smegmatis. Microbial Pathogenesis, 2008, 44, 71-77.	1.3	16
35	A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active tubercle bacilli. Journal of Microbiological Methods, 2008, 73, 62-68.	0.7	68
36	Identification of a respiratory-type nitrate reductase and its role for survival of Mycobacterium smegmatis in Wayne model. Microbial Pathogenesis, 2006, 41, 90-95.	1.3	17

#	Article	IF	CITATIONS
37	Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 223-253.	1.9	40
38	Protein secretion systems in Fusobacterium nucleatum: Genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1713, 92-112.	1.4	57
39	Bacterial FHA domains: neglected players in the phospho-threonine signalling game?. Trends in Microbiology, 2002, 10, 556-563.	3.5	102
40	Human M1 Macrophages Express Unique Innate Immune Response Genes After Mycobacterial Infection to Defend Against Tuberculosis. SSRN Electronic Journal, $0, \dots$	0.4	2
41	Antibody-Mediated LILRB2-Receptor Antagonism Induces Human Myeloid-Derived Suppressor Cells to Kill Mycobacterium tuberculosis. Frontiers in Immunology, 0, 13, .	2.2	4