
Joana T Cunha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8930963/publications.pdf Version: 2024-02-01

ΙΟΛΝΑ Τ ΟΠΝΗΛ

#	Article	IF	CITATIONS
1	Whole Cell Biocatalysis of 5-Hydroxymethylfurfural for Sustainable Biorefineries. Catalysts, 2022, 12, 202.	1.6	13
2	Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnology Advances, 2021, 47, 107697.	6.0	67
3	DNA-based approaches for dairy products authentication: A review and perspectives. Trends in Food Science and Technology, 2021, 109, 386-397.	7.8	21
4	Strategies towards Reduction of Cellulases Consumption: Debottlenecking the Economics of Lignocellulosics Valorization Processes. Polysaccharides, 2021, 2, 287-310.	2.1	18
5	Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Conversion and Management, 2021, 243, 114359.	4.4	27
6	Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives. Journal of Fungi (Basel, Switzerland), 2021, 7, 1047.	1.5	16
7	Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnology for Biofuels, 2020, 13, 138.	6.2	56
8	Engineered <i>Saccharomyces cerevisiae</i> for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered, 2020, 11, 883-903.	1.4	57
9	Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnology for Biofuels, 2019, 12, 20.	6.2	114
10	Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Applied Microbiology and Biotechnology, 2019, 103, 159-175.	1.7	104
11	Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood. Cellulose, 2018, 25, 2505-2514.	2.4	14
12	HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Applied Microbiology and Biotechnology, 2018, 102, 4589-4600.	1.7	54
13	Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Bioresource Technology, 2018, 267, 481-491.	4.8	67
14	RAPD/SCAR Approaches for Identification of Adulterant Breeds' Milk in Dairy Products. Methods in Molecular Biology, 2017, 1620, 183-193.	0.4	4
15	Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions. Bioresource Technology, 2017, 227, 24-34.	4.8	66
16	RAPD and SCAR markers as potential tools for detection of milk origin in dairy products: Adulterant sheep breeds in Serra da Estrela cheese production. Food Chemistry, 2016, 211, 631-636.	4.2	26
17	Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresource Technology, 2015, 191, 7-16.	4.8	50