
Elliott G Duncan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8930959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transformation of arsenic lipids in decomposing Ecklonia radiata. Journal of Applied Phycology, 2019, 31, 3979-3987.	2.8	5
2	Halophytic shrubs accumulate minerals associated with antioxidant pathways. Grass and Forage Science, 2019, 74, 345-355.	2.9	10
3	Metal oxide nanomaterials used to remediate heavy metal contaminated soils have strong effects on nutrient and trace element phytoavailability. Science of the Total Environment, 2019, 678, 430-437.	8.0	35
4	Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions. Journal of Plant Nutrition and Soil Science, 2018, 181, 364-373.	1.9	57
5	Arsenolipid biosynthesis by the unicellular alga <i>Dunaliella tertiolecta</i> is influenced by As/P ratio in culture experiments. Metallomics, 2018, 10, 145-153.	2.4	20
6	Arsenic concentrations and speciation in Australian and imported rice and commercial rice products. Environmental Chemistry, 2018, 15, 387.	1.5	9
7	Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Research, 2018, 226, 56-65.	5.1	103
8	Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs. Environmental Chemistry, 2018, 15, 46.	1.5	19
9	Dimethylarsenate (DMA) exposure influences germination rates, arsenic uptake and arsenic species formation in wheat. Chemosphere, 2017, 181, 44-54.	8.2	31
10	The nitrification inhibitor 3,4,-dimethylpyrazole phosphate strongly inhibits nitrification in coarse-grained soils containing a low abundance of nitrifying microbiota. Soil Research, 2017, 55, 28.	1.1	13
11	A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors. Plant and Soil, 2017, 413, 275-287.	3.7	19
12	Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers. Environmental Geochemistry and Health, 2017, 39, 955-966.	3.4	43
13	Crop and microbial responses to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in Mediterranean wheat-cropping systems. Soil Research, 2017, 55, 553.	1.1	10
14	Inorganic Arsenic Concentrations in Wheat Chaff Exceed Those in Wheat Grain. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	1
15	Arsenic concentrations and species in three hydrothermal vent worms, Ridgeia piscesae, Paralvinella sulficola and Paralvinella palmiformis. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 116, 41-48.	1.4	4
16	A composite guanyl thiourea (GTU), dicyandiamide (DCD) inhibitor improves the efficacy of nitrification inhibition in soil. Chemosphere, 2016, 163, 1-5.	8.2	6
17	Ecotoxicological Effects of an Arsenic Remediation Method on Three Freshwater Organisms—Lemna disperma, Chlorella sp. CE-35 and Ceriodaphnia cf. dubia. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	1
18	The formation and fate of organoarsenic species in marine ecosystems: do existing experimental approaches appropriately simulate ecosystem complexity?. Environmental Chemistry, 2015, 12, 149.	1.5	13

Elliott G Duncan

#	Article	IF	CITATIONS
19	Contribution of Arsenic Species in Unicellular Algae to the Cycling of Arsenic in Marine Ecosystems. Environmental Science & Technology, 2015, 49, 33-50.	10.0	87
20	The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms. Environmental Chemistry, 2014, 11, 289.	1.5	10
21	Total arsenic concentrations and arsenic species present in naturally decomposing Ecklonia radiata tissues collected from various marine habitats. Journal of Applied Phycology, 2014, 26, 2193-2201.	2.8	9
22	The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta. Journal of Applied Phycology, 2014, 26, 2129-2134.	2.8	17
23	Arsenoriboside degradation in marine systems: The use of bacteria culture incubation experiments as model systems. Chemosphere, 2014, 95, 635-638.	8.2	9
24	Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 2014, 106, 126-135.	6.0	64
25	The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Marine Chemistry, 2013, 157, 78-85.	2.3	49
26	Thio arsenic species measurements in marine organisms and geothermal waters. Microchemical Journal, 2013, 111, 82-90.	4.5	42
27	Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana. Environmental Chemistry, 2013, 10, 91.	1.5	30
28	Distribution of arsenic species in an open seagrass ecosystem: relationship to trophic groups, habitats and feeding zones. Environmental Chemistry, 2012, 9, 77.	1.5	26
29	Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. Ecotoxicology, 2012, 21, 576-590.	2.4	28
30	Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environmental Chemistry, 2011, 8, 9.	1.5	42
31	Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton <i>Dunaliella tertiolecta</i> . Botanica Marina, 2010, 53, 377-386.	1.2	36