Flavio Pino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/893044/publications.pdf

Version: 2024-02-01

840776 996975 14 869 11 15 citations h-index g-index papers 15 15 15 1673 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Nanomaterials for Sensing and Destroying Pesticides. Chemical Reviews, 2012, 112, 5317-5338.	47.7	461
2	Electrical Transport and Field-Effect Transistors Using Inkjet-Printed SWCNT Films Having Different Functional Side Groups. ACS Nano, 2010, 4, 3318-3324.	14.6	79
3	Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosensors and Bioelectronics, 2016, 75, 365-374.	10.1	71
4	Polymerâ^Electrode Interfacial Effect on Photovoltaic Performances in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester Based Solar Cells. Journal of Physical Chemistry C, 2009, 113, 16807-16810.	3.1	55
5	Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. Journal of Materials Chemistry B, 2014, 2, 2233-2239.	5.8	45
6	High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochemistry Communications, 2016, 71, 33-37.	4.7	42
7	Epitaxial YBa $<$ sub $>$ 2 $<$ /sub $>$ Cu $<$ sub $>$ 3 $<$ /sub $>$ O $<$ sub $>$ 7â $^{\circ}$ $^{\circ}$ <i<math>>>x</i$><$/sub$>$nanocomposite films and coated conductors from Ba$<$i$>M<$/i$>$O$<$sub$>$3$<$/sub$>$($<$i$>M<$/i$>=$ Zr, Hf) colloidal solutions. Superconductor Science and Technology, 2018, 31, 044001.</i<math>	3.5	27
8	Growth of all-chemical high critical current YBa $<$ sub $>$ 2 $<$ /sub $>$ Cu $<$ sub $>$ 3 $<$ /sub $>$ O $<$ sub $>$ 7 \hat{a} $^{\circ}$ $<$ i $>i$ \hat{l} $^{\circ}$ $<$ /sub $>$ thick films and coated conductors. Superconductor Science and Technology, 2019, 32, 015004.	3.5	25
9	Direct electrochemical detection of trichothecenes in wheat samples using a 96-well electrochemical plate coupled with microwave hydrolysis. World Mycotoxin Journal, 2009, 2, 239-245.	1.4	16
10	Magnetic Enzymatic Platform for Organophosphate Pesticide Detection Using Boron-doped Diamond Electrodes. Analytical Sciences, 2015, 31, 1061-1068.	1.6	14
11	Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9101-9112.	8.0	13
12	High Performance of Superconducting YBa ₂ Cu ₃ O ₇ Thick Films Prepared by Single-Deposition Inkjet Printing. ACS Applied Electronic Materials, 2021, 3, 3948-3961.	4.3	8
13	Electrical transport through single-wall carbon nanotube–anodic aluminum oxide–aluminum heterostructures. Nanotechnology, 2010, 21, 035707.	2.6	6
14	Nanomaterials-Based Platforms for Environmental Monitoring. Comprehensive Analytical Chemistry, 2017, , 207-236.	1.3	4