
Nicolas N Madigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist, 2022, 28, 163-179.	2.6	16
2	The Role of Alginate Hydrogels as a Potential Treatment Modality for Spinal Cord Injury: A Comprehensive Review of the Literature. Neurospine, 2022, 19, 272-280.	1.1	10
3	Alterations of mesenchymal stromal cells in cerebrospinal fluid: insights from transcriptomics and an ALS clinical trial. Stem Cell Research and Therapy, 2021, 12, 187.	2.4	8
4	Filamentous tangles with nemaline rods in MYH2 myopathy: a novel phenotype. Acta Neuropathologica Communications, 2021, 9, 79.	2.4	9
5	Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins. Biomedicines, 2021, 9, 479.	1.4	13
6	Defining Spatial Relationships Between Spinal Cord Axons and Blood Vessels in Hydrogel Scaffolds. Tissue Engineering - Part A, 2021, 27, 648-664.	1.6	7
7	Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation. Npj Regenerative Medicine, 2021, 6, 66.	2.5	12
8	Micropatterning Decellularized ECM as a Bioactive Surface to Guide Cell Alignment, Proliferation, and Migration. Bioengineering, 2020, 7, 102.	1.6	8
9	Necrotizing autoimmune myopathy with tubular aggregates. Neurology, 2019, 93, 313-314.	1.5	1
10	DNA methylation patterns in human iPSC-derived sensory neuronal differentiation. Epigenetics, 2019, 14, 927-937.	1.3	9
11	Glucocorticoids Target Ependymal Glia and Inhibit Repair of the Injured Spinal Cord. Frontiers in Cell and Developmental Biology, 2019, 7, 56.	1.8	18
12	Combinatorial tissue engineering partially restores function after spinal cord injury. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 857-873.	1.3	18
13	GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e398-e407.	1.3	50
14	A <i>tropomyosin-receptor kinase-fused</i> gene mutation associates with vacuolar myopathy. Neurology: Genetics, 2018, 4, e287.	0.9	5
15	Genome editing technologies and their potential to treat neurologic disease. Neurology, 2017, 89, 1739-1748.	1.5	6
16	Nerve Guidance by a Decellularized Fibroblast Extracellular Matrix. Matrix Biology, 2017, 60-61, 176-189.	1.5	55
17	Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS. Neurology, 2016, 87, 2230-2234.	1.5	93
18	Comparison of Cellular Architecture, Axonal Growth, and Blood Vessel Formation Through Cell-Loaded Polymer Scaffolds in the Transected Rat Spinal Cord. Tissue Engineering - Part A, 2014, 20, 2985-2997.	1.6	38

#	Article	IF	CITATIONS
19	Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair. Biomaterials, 2011, 32, 8077-8086.	5.7	71
20	Sustained Delivery of Dibutyryl Cyclic Adenosine Monophosphate to the Transected Spinal Cord Via Oligo [(Polyethylene Glycol) Fumarate] Hydrogels. Tissue Engineering - Part A, 2011, 17, 1287-1302.	1.6	42
21	Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respiratory Physiology and Neurobiology, 2009, 169, 183-199.	0.7	161