Young-Wook Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929723/publications.pdf

Version: 2024-02-01

394286 434063 1,196 101 19 31 citations g-index h-index papers 102 102 102 1853 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Random rubbed structure for enhanced light extraction in organic light-emitting diodes. Journal of Luminescence, 2022, 243, 118670.	1.5	3
2	Enhanced Light Extraction from Organic Light-Emitting Diodes with Micro-Nano Hybrid Structure. Nanomaterials, 2022, 12, 1266.	1.9	10
3	A Simple Method for Fabricating an External Light Extraction Composite Layer with RNS to Improve the Optical Properties of OLEDs. Nanomaterials, 2022, 12, 1430.	1.9	5
4	Micro-Sphere PDMS for Enhancing Light Extraction in Organic Light-Emitting Devices. Nanomaterials, 2022, 12, 2007.	1.9	2
5	Flexible external light extraction in organic light-emitting diodes by porous PDMS film fabricated by high-pressure steam process. Organic Electronics, 2022, 108, 106575.	1.4	4
6	Enhanced light extraction efficiency and viewing angle characteristics of microcavity OLEDs by using a diffusion layer. Scientific Reports, 2021, 11, 3430.	1.6	15
7	Effect of Viscosity on the Formation of Porous Polydimethylsiloxane for Wearable Device Applications. Molecules, 2021, 26, 1471.	1.7	3
8	Solution process manufacture of a simple, multifunctional flexible sensor based on capacitance measurement. Nanotechnology, 2021, 32, 265503.	1.3	O
9	Green phosphorescent organic light-emitting diode exhibiting highest external quantum efficiency with ultra-thin undoped emission layer. Scientific Reports, 2021, 11, 8436.	1.6	13
10	Organic Thin-Film Characteristics Modulated by Deposition Substrate Rotation Speed and the Effect on Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2021, 21, 4185-4191.	0.9	0
11	Color Tuning of 2-Color Based White Organic Light-Emitting Diodes with Undoped Ultra-Thin Emission Layer. Journal of Nanoscience and Nanotechnology, 2021, 21, 4179-4184.	0.9	O
12	Characteristics of Self-Nanostructured Growth of 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-Methylpyrimidine (B3PyMPM). Journal of Nanoscience and Nanotechnology, 2021, 21, 4212-4215.	0.9	0
13	The Effects of the Rotational Speed of the Deposition Substrate on the Morphological and Current Injection Characteristics of LiF Thin Films. Journal of Nanoscience and Nanotechnology, 2021, 21, 4208-4211.	0.9	1
14	Self-catalytic-grown SnO \times nanocones for light outcoupling enhancement in organic light-emitting diodes. Nanotechnology, 2020, 31, 135204.	1.3	3
15	Influence of Thermal Evaporation Substrate Revolution Velocity on Electroluminescence Characteristics of Organic Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2020, 20, 6688-6691.	0.9	O
16	Reduced Efficiency Roll-Off in Phosphorescent Organic Light-Emitting Diodes with a Double Dopant. Journal of Nanoscience and Nanotechnology, 2020, 20, 6679-6682.	0.9	2
17	Modeling of flexible light extraction structure: Improved flexibility and optical efficiency for organic light-emitting diodes. Organic Electronics, 2020, 85, 105760.	1.4	6
18	Improving the optical properties of organic light-emitting diodes using random nanoscale rods with a double refractive index. Nanotechnology, 2020, 31, 335205.	1.3	3

#	Article	IF	CITATIONS
19	Enhanced optical efficiency and color purity for organic light-emitting diodes by finely optimizing parameters of nanoscale low-refractive index grid. Scientific Reports, 2020, 10, 5631.	1.6	15
20	Spin-polarized carrier injection through hybrid ferromagnetic electrode for enhanced optical efficiency of organic light-emitting diodes. Organic Electronics, 2020, 84, 105755.	1.4	12
21	Pâ€170: Green Phosphorescent Organic Lightâ€Emitting Diodes with Ultraâ€thin Undoped Emission Layer of nearly 24% External Quantum Efficiency. Digest of Technical Papers SID International Symposium, 2020, 51, 2024-2026.	0.1	0
22	Microcavity characteristics analysis of micro-shuttered organic light-emitting diodes. Thin Solid Films, 2019, 692, 137643.	0.8	1
23	Extraction of Light Using Random Nanocone on Poly(vinyl-butyral) for Flexible OLEDs. Scientific Reports, 2019, 9, 12312.	1.6	3
24	Ag fiber/IZO Composite Electrodes: Improved Chemical and Thermal Stability and Uniform Light Emission in Flexible Organic Light-Emitting Diodes. Scientific Reports, 2019, 9, 738.	1.6	14
25	Optical characteristics of refractive-index-matching diffusion layer in organic light-emitting diodes. Scientific Reports, 2019, 9, 8690.	1.6	21
26	Internal Lightâ€Extraction Layers with Different Refractive Indices for Organic Lightâ€Emitting Diodes. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800833.	0.8	2
27	Pâ€214: Lateâ€News Poster: Enhanced Outâ€coupling Efficiency of Organic Lightâ€emitting Diodes Using a Corrugated Microcavity Structure. Digest of Technical Papers SID International Symposium, 2019, 50, 1970-1972.	0.1	0
28	Solution Processable, Flexible, and Transparent Hybrid Electrodes Using Tungsten Oxide Buffer Layer on Silver Nanowires. Journal of Nanoscience and Nanotechnology, 2019, 19, 6197-6201.	0.9	1
29	Clumping Between Carbon Black and Titanium Dioxide Pigment by Water Vapor Absorption and Its Correlation with Electrophoretic Display. Journal of Nanoscience and Nanotechnology, 2019, 19, 6444-6451.	0.9	1
30	Highly efficient flexible OLEDs based on double-sided nano-dimpled substrate (PVB) with embedded AgNWs and TiO2 nanoparticle for internal and external light extraction. Optical Materials, 2019, 92, 87-94.	1.7	9
31	Enhanced light extraction from organic light-emitting diodes using a quasi-periodic nano-structure. Nanotechnology, 2019, 30, 085302.	1.3	3
32	Junctionâ€Free Electrospun Ag Fiber Electrodes for Flexible Organic Lightâ€Emitting Diodes. Small, 2018, 14, 1702567.	5 . 2	41
33	Simple method for fabricating scattering layer using random nanoscale rods for improving optical properties of organic light-emitting diodes. Scientific Reports, 2018, 8, 14311.	1.6	20
34	Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly(vinyl-butyral) for flexible OLED. Scientific Reports, 2018, 8, 14170.	1.6	37
35	Light Extraction Enhancement in Flexible Organic Light-Emitting Diodes by a Light-Scattering Layer of Dewetted Ag Nanoparticles at Low Temperatures. ACS Applied Materials & Devetages, 2018, 10, 32373-32379.	4.0	31
36	Nano-arrayed OLEDs: enhanced outcoupling efficiency and suppressed efficiency roll-off. Nanoscale, 2018, 10, 19330-19337.	2.8	16

#	Article	IF	Citations
37	Pâ€185: Enhanced Light Extraction of Flexible Organic Lightâ€emitting Diodes by Ag Nanoparticles as Scattering Layer. Digest of Technical Papers SID International Symposium, 2018, 49, 1853-1855.	0.1	O
38	P-187: Ultra-smooth Silver Nanowires Flexible Transparent Electrode for Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 1859-1861.	0.1	0
39	Pâ€186: Extremely Long Length Electrospun Ag Fiber Electrodes for Flexible Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 1856-1858.	0.1	O
40	Pâ€197: Enhanced Outâ€coupling Efficiency of Organic Lightâ€Emitting Diodes using Nanoâ€sized Pixel Defining Layer. Digest of Technical Papers SID International Symposium, 2017, 48, 2006-2008.	0.1	0
41	P-179: Enhanced Light Extraction from Organic Light-Emitting Diodes using a Quasi-periodic Nanostructure. Digest of Technical Papers SID International Symposium, 2017, 48, 1947-1948.	0.1	O
42	Pâ€194: Control of the Viewing Angle Dependence by Inserting of Scattering Layer on Microcavity OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1996-1998.	0.1	0
43	Spectral-distortion-free light extraction from organic light-emitting diodes using nanoscale photonic crystal. Nanotechnology, 2017, 28, 045301.	1.3	8
44	P-160: Silver Nanowire-Transparent Conducting Oxide-Conducting Polymer Hybrids for Flexible and Transparent Conductive Electrodes for Organic Light Emitting Dodes. Digest of Technical Papers SID International Symposium, 2016, 47, 1725-1726.	0.1	0
45	Silver Nanowire-IZO-Conducting Polymer Hybrids for Flexible and Transparent Conductive Electrodes for Organic Light-Emitting Diodes. Scientific Reports, 2016, 6, 34150.	1.6	47
46	Plasmonic Periodic Nanodot Arrays <i>via</i> Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency. ACS Nano, 2016, 10, 10143-10151.	7.3	48
47	An extremely low-index photonic crystal layer for enhanced light extraction from organic light-emitting diodes. Nanoscale, 2016, 8, 4113-4120.	2.8	33
48	Pâ€137: Improved Light Extraction of Organic Lightâ€Emitting Diodes using Embedded Nanoscale Vacuum Line Layer. Digest of Technical Papers SID International Symposium, 2015, 46, 1678-1679.	0.1	0
49	Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation. Nanoscale, 2015, 7, 2723-2728.	2.8	17
50	Highly Oriented Gold/Nanoclay–Polymer Nanocomposites for Flexible Gas Barrier Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4778-4783.	4.0	31
51	Novel Composite Layer Based on Electrospun Polymer Nanofibers for Efficient Light Scattering. ACS Applied Materials & Samp; Interfaces, 2015, 7, 68-74.	4.0	22
52	High-Performance Hybrid Buffer Layer Using 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile/Molybdenum Oxide in Inverted Top-Emitting Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6047-6053.	4.0	21
53	Pâ€151: Optical Efficiency Enhancement of Organic Lightâ€Emitting Diode Based on a Nanoâ€Sized Stripe Auxiliary Electrode. Digest of Technical Papers SID International Symposium, 2014, 45, 1551-1553.	0.1	O
54	Nanoshuttered OLEDs: Unveiled Invisible Auxiliary Electrode. Advanced Functional Materials, 2014, 24, 6414-6421.	7.8	12

#	Article	IF	CITATIONS
55	Highly improved light extraction with a reduced spectrum distortion of organic light-emitting diodes composed by the sub-visible wavelength nano-scale periodic (â°1/4250nm) structure and micro-lens array. Organic Electronics, 2014, 15, 111-117.	1.4	23
56	Improvement of light out-coupling in organic light-emitting diodes by printed nanosized random texture layer. Organic Electronics, 2013, 14, 187-192.	1.4	12
57	Effective Indium-Doped Zinc Oxide Buffer Layer on Silver Nanowires for Electrically Highly Stable, Flexible, Transparent, and Conductive Composite Electrodes. ACS Applied Materials & Electrodes, 2013, 5, 10397-10403.	4.0	52
58	Negative mold transfer patterned conductive polymer electrode for flexible organic light-emitting diodes. Organic Electronics, 2013, 14, 416-422.	1.4	25
59	P.40: Encapsulated Flexible Organic Lightâ€Emitting Diodes: Progress Toward a Simple and Cost Effective Contact Printing Technique. Digest of Technical Papers SID International Symposium, 2013, 44, 1137-1139.	0.1	0
60	Low-haze light extraction from organic light-emitting diode lighting with auxiliary electrode by selective microlens arrays. Optics Letters, 2013, 38, 4182.	1.7	10
61	Role of n-dopant based electron injection layer in n-doped organic light-emitting diodes and its simple alternative. Applied Physics Letters, 2012, 100, 013312.	1.5	12
62	P-54: Contact Printing Technologies for Encapsulation of Flexible OLEDs. Digest of Technical Papers SID International Symposium, 2012, 43, 1258-1260.	0.1	0
63	Enhanced Power Efficiency of Organic Light-Emitting Diodes using Pentacene on \$hbox{CF}_{4}\$-Plasma-Treated Indium Tin Oxide Anodes. IEEE Electron Device Letters, 2012, 33, 1156-1158.	2.2	8
64	Fuzzy Nanoassembly of Polyelectrolyte and Layered Clay Multicomposite toward a Reliable Gas Barrier. Langmuir, 2012, 28, 6826-6831.	1.6	35
65	The Emission Properties of Integrated Organic Light Emitting Diodes With Organic Photo Sensor for Emotional Lighting Applications. IEEE Electron Device Letters, 2011, 32, 348-350.	2.2	9
66	P-69: Solution-based Low-cost Process using Contact Printing for the Fabrication of Organic Light-Emitting Diodes. Digest of Technical Papers SID International Symposium, 2011, 42, 1361-1363.	0.1	0
67	Pâ€174: The Electrical Properties of Transparent Emotional OLED Lighting Based on Organic Environment Sensor. Digest of Technical Papers SID International Symposium, 2011, 42, 1753-1756.	0.1	0
68	Pâ€65: Flexible Gasâ€Barrier Technologies with Inorganic Nanolaminate, Surface Modifications and Its Measurements. Digest of Technical Papers SID International Symposium, 2011, 42, 1348-1350.	0.1	0
69	The response characteristics of odor sensor based on organic thin-film transistor for environment malodor measurements. Current Applied Physics, 2011, 11, S163-S166.	1.1	0
70	Contact printing of the emitting layer for high performance multilayered phosphorescent organic light-emitting diodes. Organic Electronics, 2011, 12, 1063-1067.	1.4	5
71	The flexible Ca-test: An improved performance in a gas permeability measurement system. Review of Scientific Instruments, 2011, 82, 054702.	0.6	10
72	White Organic Light-Emitting Diodes Utilized by Near UV-Deep Blue Emitter and Exciplex Emission. Journal of Nanoscience and Nanotechnology, 2011, 11, 1381-1384.	0.9	2

#	Article	IF	Citations
73	Electroluminescence Property of Highly Soluble Ir(III) Complex Utilized by Various Hole Blocking Layers in Polymer Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3250-3253.	0.9	6
74	The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors. Sensors and Actuators B: Chemical, 2010, 146, 40-45.	4.0	87
75	Tunable emission of polymer light emitting diodes bearing green-emitting Ir(III) complexes: The structural role of 9-((6-(4-fluorophenyl)pyridin-3-yl)methyl)-9H-carbazole ligands. Dyes and Pigments, 2010, 85, 143-151.	2.0	39
76	Organic soluble deoxyribonucleic acid (DNA) bearing carbazole moieties and its blend with phosphorescent Ir(III) complexes. Journal of Polymer Science Part A, 2010, 48, 1913-1918.	2.5	15
77	Color Stable White Organic Light-Emitting Diodes Having High Color Rendering Index Utilized by Simple-Hybrid Structures. Electrochemical and Solid-State Letters, 2010, 13, J81.	2.2	2
78	Improved stability of a phase change memory device using Ge-doped SbTe at varying ambient temperature. Applied Physics Letters, 2010, 96, 133510.	1.5	16
79	Highly conformal SiO ₂ /Al ₂ O ₃ nanolaminate gas-diffusion barriers for large-area flexible electronics applications. Nanotechnology, 2010, 21, 475203.	1.3	50
80	Enhanced Electroluminescence Efficiency of Phosphorescent Organic Light-Emitting Diodes by Controlling the Triplet Energy of the Hole-Blocking Layer. IEEE Electron Device Letters, 2010, 31, 452-454.	2.2	3
81	Hydrophobic nanopatterning on a flexible gas barrier film by using a poly(dimethylsiloxane) elastomer. Nanotechnology, 2009, 20, 135303.	1.3	7
82	Micro-pixel array of organic light-emitting diodes applying imprinting technique with a polymer replica. Applied Physics Letters, 2009, 95, 093301.	1.5	7
83	Highly efficient tris(8-hydroxyquinoline) aluminum-based organic light-emitting diodes utilized by balanced energy transfer with cosensitizing fluorescent dyes. Applied Physics Letters, 2009, 95, 143305.	1.5	9
84	Phosphorescent, green-emitting Ir(III) complexes with carbazolyl-substituted 2-phenylpyridine ligands: Effect of binding mode of the carbazole group on photoluminescence and electrophosphorescence. Dyes and Pigments, 2009, 83, 218-224.	2.0	20
85	Effect of the plasma treatment of anode electrode of the organic light-emitting diodes on the growth of hole-injection layer. Thin Solid Films, 2009, 517, 4108-4110.	0.8	5
86	Hydrophilic Dots on Hydrophobic Nanopatterned Surfaces as a Flexible Gas Barrier. Langmuir, 2009, 25, 7156-7160.	1.6	25
87	Photoreactive main chain conjugated polymer containing oxetane moieties in the side chain and its application to green electrophosphorescence devices. Synthetic Metals, 2009, 159, 2147-2152.	2.1	4
88	Self-assembled microarray of organic light-emitting diodes using a self-assembled monolayer by microcontact printing. Applied Physics Letters, 2009, 95, 113310.	1,5	5
89	Pâ€60: Surface Modifications of Flexible Gas Barrier Films by Mimicking Structures of Nature. Digest of Technical Papers SID International Symposium, 2009, 40, 1317-1319.	0.1	0
90	Pâ€167: Effect of Energy Level of Holeâ€Blocking Layer on the Electroluminescence Characteristics of Highly Soluble Ir(III) Complex Based Phosphorescent Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2009, 40, 1740-1743.	0.1	O

#	Article	IF	Citations
91	UV-Vis Absorption and Photoluminescence Characteristics of Doped Organic Solid Depend on its Doping Concentration. Journal of Nanoscience and Nanotechnology, 2009, 9, 1607-1610.	0.9	1
92	Highly soluble greenâ€emitting Ir(III) complexes with 9â€(6â€phenylâ€pyridinâ€3â€ylmethyl)â€9 <i>H</i> à€carb ligands and their application to polymer lightâ€emitting diodes. Journal of Polymer Science Part A, 2008, 46, 7419-7428.	azole 2.5	14
93	Photoreactive hole-transporting polymer bearing oxetane moieties and its application to green polymer light-emitting diodes. Synthetic Metals, 2008, 158, 785-789.	2.1	3
94	Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates. Journal of Applied Physics, 2008, 103, 044502.	1,1	23
95	Diffusion Characteristics and Induced Electronic Channels of Magnesium in Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2008, 8, 4958-4961.	0.9	0
96	P-80: Permeation-Rate Measurements System and Its Application to Polymeric Substrates. Digest of Technical Papers SID International Symposium, 2008, 39, 1485.	0.1	0
97	Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation. Review of Scientific Instruments, 2007, 78, 064701.	0.6	70
98	Pâ€158: Highly Efficient Exciplex Emitting White OLED based on Complementary Emitters. Digest of Technical Papers SID International Symposium, 2007, 38, 796-799.	0.1	0
99	Synthesis and photophysical properties of multi-branched ethynyl fluorene-labeled molecules. Synthetic Metals, 2007, 157, 1034-1039.	2.1	2
100	Spectral broadening in electroluminescence of white organic light-emitting diodes based on complementary colors. Applied Physics Letters, 2007, 90, 033506.	1.5	26
101	Mechanical, surface, and thermal properties of polyamideimide-polydimethylsiloxane nanocomposites fabricated by sol-gel process. Journal of Applied Polymer Science, 2004, 91, 1774-1783.	1.3	14