Guancong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929645/publications.pdf

Version: 2024-02-01

270111 325983 5,894 41 25 40 citations h-index g-index papers 42 42 42 3802 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Topological pumping in acoustic waveguide arrays with hopping modulation. New Journal of Physics, 2022, 24, 013004.	1.2	8
2	Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. National Science Review, 2022, 9, .	4.6	15
3	Controlling the Spatiotemporal Response of Transient Reverberating Sound. Physical Review Applied, 2022, 17, .	1.5	8
4	Classical non-Abelian braiding of acoustic modes. Nature Physics, 2022, 18, 179-184.	6.5	32
5	Observation of Degenerate Zero-Energy Topological States at Disclinations in an Acoustic Lattice. Physical Review Letters, 2022, 128, 174301.	2.9	35
6	Landau-Zener Transition in the Dynamic Transfer of Acoustic Topological States. Physical Review Letters, 2021, 126, 054301.	2.9	42
7	Negative Transient Flux in the Near Field of a Subwavelength Source. Physical Review Applied, 2021, 16, .	1.5	1
8	Direct Measurement of Topological Properties of an Exceptional Parabola. Physical Review Letters, 2021, 127, 034301.	2.9	22
9	Multi-dimensional wave steering with higher-order topological phononic crystal. Science Bulletin, 2021, 66, 1740-1745.	4.3	26
10	Acoustic Realization of a Four-Dimensional Higher-Order Chern Insulator and Boundary-Modes Engineering. Physical Review X, 2021, 11 , .	2.8	41
11	Wave Steering by Relaying Interface States in a Valley-Hall-Derived Photonic Superlattice. Physical Review Applied, 2021, 16, .	1.5	4
12	Measurement of Corner-Mode Coupling in Acoustic Higher-Order Topological Insulators. Frontiers in Physics, 2021, 9, .	1.0	2
13	Spin-orbit interactions of transverse sound. Nature Communications, 2021, 12, 6125.	5.8	27
14	Generalized momentum conservation and Fedorov-Imbert linear shift of acoustic vortex beams at a metasurface. Physical Review B, 2021, 104, .	1.1	5
15	Synthetic Three-Dimensional Z×Z2 Topological Insulator in an Elastic Metacrystal. Physical Review Letters, 2021, 127, 214302.	2.9	9
16	Single-sided acoustic beam splitting based on parity-time symmetry. Physical Review B, 2020, 102, .	1.1	22
17	Exceptional nexus with a hybrid topological invariant. Science, 2020, 370, 1077-1080.	6.0	104
18	Chiral Symmetry Breaking of Tight-Binding Models in Coupled Acoustic-Cavity Systems. Physical Review Applied, 2020, 14, .	1.5	35

#	Article	lF	CITATIONS
19	Three-Dimensional Acoustic Double-Zero-Index Medium with a Fourfold Degenerate Dirac-like Point. Physical Review Letters, 2020, 124, 074501.	2.9	51
20	Distinguishing topological corner modes in higher-order topological insulators of finite size. Physical Review B, 2020, 101, .	1.1	15
21	Topological phases in acoustic and mechanical systems. Nature Reviews Physics, 2019, 1, 281-294.	11.9	489
22	Topological transport of sound mediated by spin-redirection geometric phase. Science Advances, 2018, 4, eaaq1475.	4.7	41
23	Towards anti-causal Green's function for three-dimensional sub-diffraction focusing. Nature Physics, 2018, 14, 608-612.	6.5	48
24	Simulation of a novel capacitive sensor for rebar corrosion detection. Construction and Building Materials, 2018, 174, 613-624.	3.2	25
25	Experimental Demonstration of an Anisotropic Exceptional Point. Physical Review Letters, 2018, 121, 085702.	2.9	80
26	Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6638-6643.	3.3	95
27	Topological Subspace-Induced Bound State in the Continuum. Physical Review Letters, 2017, 118, 166803.	2.9	125
28	Merging of exceptional points in classical waves. , 2016, , .		O
28	Merging of exceptional points in classical waves. , 2016, , . Fluid-like elasticity induced by anisotropic effective mass density. , 2016, , .		0
		5.8	
29	Fluid-like elasticity induced by anisotropic effective mass density., 2016, , . Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nature	5.8	0
30	Fluid-like elasticity induced by anisotropic effective mass density., 2016, , . Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nature Communications, 2016, 7, 13536. Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their		96
29 30 31	Fluid-like elasticity induced by anisotropic effective mass density., 2016, , . Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nature Communications, 2016, 7, 13536. Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization. Physical Review X, 2016, 6, .	2.8	96 263
29 30 31 32	Fluid-like elasticity induced by anisotropic effective mass density., 2016, , . Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nature Communications, 2016, 7, 13536. Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization. Physical Review X, 2016, 6, . Acoustic metamaterials: From local resonances to broad horizons. Science Advances, 2016, 2, e1501595. Subwavelength perfect acoustic absorption in membrane-type metamaterials: a geometric perspective.	2.8	96 263 986
29 30 31 32	Fluid-like elasticity induced by anisotropic effective mass density., 2016,,. Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nature Communications, 2016, 7, 13536. Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization. Physical Review X, 2016, 6, . Acoustic metamaterials: From local resonances to broad horizons. Science Advances, 2016, 2, e1501595. Subwavelength perfect acoustic absorption in membrane-type metamaterials: a geometric perspective. EPJ Applied Metamaterials, 2015, 2, 10.	2.8 4.7 0.8	96 263 986

Guancong

#	Article	IF	CITATIONS
37	Acoustic metasurface with hybrid resonances. Nature Materials, 2014, 13, 873-878.	13.3	801
38	Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 2013, 110, 134301.	2.9	276
39	Low-frequency narrow-band acoustic filter with large orifice. Applied Physics Letters, 2013, 103, .	1.5	91
40	Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 2012, 3, 756.	5.8	835
41	Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 2010, 96, .	1.5	385