Christine A Orme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929601/publications.pdf Version: 2024-02-01

CHDISTINE & ODME

#	Article	IF	CITATIONS
1	Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature, 2001, 411, 775-779.	27.8	621
2	Stable and unstable growth in molecular beam epitaxy. Physical Review Letters, 1994, 72, 116-119.	7.8	468
3	Thermodynamics of Calcite Growth: Baseline for Understanding Biomineral Formation. , 1998, 282, 724-727.		448
4	Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proceedings of the United States of America, 2004, 101, 1811-1815.	7.1	258
5	Ultralow Density, Monolithic WS ₂ , MoS ₂ , and MoS ₂ /Graphene Aerogels. ACS Nano, 2015, 9, 4698-4705.	14.6	159
6	Large scale surface structure formed during GaAs (001) homoepitaxy. Applied Physics Letters, 1994, 64, 860-862.	3.3	138
7	Acceleration of Calcite Kinetics by Abalone Nacre Proteins. Advanced Materials, 2005, 17, 2678-2683.	21.0	123
8	Influence of Chromium and Molybdenum on the Corrosion of Nickel-Based Alloys. Corrosion, 2006, 62, 491-500.	1.1	119
9	Modulation of Calcium Oxalate Monohydrate Crystallization by Citrate through Selective Binding to Atomic Steps. Journal of the American Chemical Society, 2005, 127, 9036-9044.	13.7	117
10	Hollow Goldâ^'Silver Double-Shell Nanospheres:  Structure, Optical Absorption, and Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2008, 112, 6319-6329.	3.1	114
11	Macroscopic 3D Nanographene with Dynamically Tunable Bulk Properties. Advanced Materials, 2012, 24, 5083-5087.	21.0	111
12	Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. Journal of Biophotonics, 2009, 2, 322-332.	2.3	102
13	Dissolution at the Nanoscale: Self-Preservation of Biominerals. Angewandte Chemie - International Edition, 2004, 43, 2697-2701.	13.8	98
14	Dynamics of Biomineral Formation at the Near-Molecular Level. Chemical Reviews, 2008, 108, 4784-4822.	47.7	96
15	Mechanism of Dissolution of Sparingly Soluble Electrolytes. Journal of the American Chemical Society, 2001, 123, 5437-5443.	13.7	88
16	Molecular mechanisms of crystallization impacting calcium phosphate cements. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1937-1961.	3.4	80
17	Control of Biomineralization Dynamics by Interfacial Energies. Angewandte Chemie - International Edition, 2005, 44, 3698-3702.	13.8	79
18	A New Model for Nanoscale Enamel Dissolution. Journal of Physical Chemistry B, 2005, 109, 999-1005.	2.6	75

#	Article	IF	CITATIONS
19	Instabilities in MBE Growth. Europhysics Letters, 1994, 27, 611-616.	2.0	73
20	Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22. Surface Science, 2006, 600, 2488-2494.	1.9	73
21	Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Applied Physics Letters, 2006, 88, 153102.	3.3	64
22	Electrochemical impedance spectroscopy study of the passive films of alloy 22 in low pH nitrate and chloride environments. Electrochimica Acta, 2007, 52, 2370-2375.	5.2	62
23	Molecular "Tuning―of Crystal Growth by Nacre-Associated Polypeptides. Crystal Growth and Design, 2006, 6, 5-10.	3.0	60
24	Effect of hydrogen peroxide on titanium surfaces:In situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum, 4-vanadium. Journal of Biomedical Materials Research Part B, 2003, 67A, 702-712.	3.1	58
25	A New Understanding of Demineralization:Â The Dynamics of Brushite Dissolution. Journal of Physical Chemistry B, 2003, 107, 10653-10657.	2.6	55
26	Direct observation of hydration of TiO2 on Ti using electrochemical AFM: freely corroding versus potentiostatically held. Surface Science, 2001, 491, 370-387.	1.9	52
27	Using Nucleation Rates to Determine the Interfacial Line Tension of Symmetric and Asymmetric Lipid Bilayer Domains. Langmuir, 2007, 23, 5875-5877.	3.5	51
28	Fabrication of high-aspect-ratio carbon nanocone probes by electron beam induced deposition patterning. Nanotechnology, 2006, 17, 4322-4326.	2.6	50
29	In situ imaging and impedance measurements of titanium surfaces using AFM and SPIS. Biomaterials, 2003, 24, 1837-1852.	11.4	46
30	Quantifying Growth of Symmetric and Asymmetric Lipid Bilayer Domains. Langmuir, 2008, 24, 1219-1224.	3.5	46
31	Studies of large scale unstable growth formed during GaAs(001) homoepitaxy. Journal of Crystal Growth, 1995, 150, 128-135.	1.5	44
32	Dissolution of Crystallites: Surface Energetic Control and Size Effects. ChemPhysChem, 2004, 5, 688-696.	2.1	44
33	Domain Nucleation Rates and Interfacial Line Tensions in Supported Bilayers of Ternary Mixtures Containing Galactosylceramide. Biophysical Journal, 2008, 94, 2691-2697.	0.5	39
34	Entropic Barriers in Nanoscale Adhesion Studied by Variable Temperature Chemical Force Microscopy. Journal of the American Chemical Society, 2003, 125, 1356-1362.	13.7	37
35	Influence of Solution pH, Anion Concentration, and Temperature on the Corrosion Properties of Alloy 22. Journal of the Electrochemical Society, 2006, 153, B61.	2.9	37
36	Rapid assessment of anisotropic surface processes: experiments on the corrosion of Inconel 600. Surface Science, 2003, 544, 183-192.	1.9	36

#	Article	IF	CITATIONS
37	The solubility and recrystallization of 1,3,5-triamino-2,4,6-trinitrobenzene in a 3-ethyl-1-methylimidazolium acetate–DMSO co-solvent system. New Journal of Chemistry, 2009, 33, 50-56.	2.8	36
38	Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices. Nano Letters, 2017, 17, 3862-3869.	9.1	36
39	In situ atomic force microscopy of layer-by-layer crystal growth and key growth concepts. Crystallography Reports, 2006, 51, 1063-1074.	0.6	35
40	A Bioinspired Artificial Injury Response System Based on a Robust Polymer Memristor to Mimic a Sense of Pain, Sign of Injury, and Healing. Advanced Science, 2022, 9, e2200629.	11.2	34
41	An in situ AFM Study of the Evolution of Surface Roughness for Zinc Electrodeposition within an Imidazolium Based Ionic Liquid Electrolyte. Electrochimica Acta, 2015, 152, 161-171.	5.2	31
42	Morphological and Kinetic Transformation of Calcite Crystal Growth by Prismatic-Associated Asprich Sequences. Crystal Growth and Design, 2008, 8, 1154-1160.	3.0	28
43	Dual roles of brushite crystals in calcium oxalate crystallization provide physicochemical mechanisms underlying renal stone formation. Kidney International, 2006, 70, 71-78.	5.2	27
44	Modulation of Crystal Growth by the Terminal Sequences of the Prismatic-Associated Asprich Protein. Crystal Growth and Design, 2008, 8, 4481-4486.	3.0	26
45	Space- and time-resolved small angle X-ray scattering to probe assembly of silver nanocrystal superlattices. Nature Communications, 2018, 9, 4211.	12.8	26
46	Solvent screening for a hard-to-dissolve molecular crystal. Physical Chemistry Chemical Physics, 2008, 10, 5050.	2.8	25
47	Inhibiting Effects of Nitrates on the Passive Film Breakdown of Alloy 22 in Chloride Environments. Journal of the Electrochemical Society, 2006, 153, B156.	2.9	18
48	Direct visualization of phase transition dynamics in binary supported phospholipid bilayers using imaging ellipsometry. Soft Matter, 2008, 4, 1161.	2.7	16
49	Characterization of Folic Acid and Poly(amidoamine) Dendrimer Interactions with Folate Binding Protein: A Force-Pulling Study. Journal of Physical Chemistry B, 2015, 119, 11506-11512.	2.6	16
50	Atomic force microscope chamber forin situstudies of ice. Review of Scientific Instruments, 2001, 72, 4159-4163.	1.3	14
51	Shape control synthesis of fluorapatite structures based on supersaturation: prismatic nanowires, ellipsoids, star, and aggregate formation. CrystEngComm, 2012, 14, 6384.	2.6	14
52	Dynamic Changes in LSM Nanoparticles on YSZ: A Model System for Non-Stationary SOFC Cathode Behavior. Journal of the Electrochemical Society, 2009, 156, B602.	2.9	13
53	An Understanding of Renal Stone Development in a Mixed Oxalateâ^'Phosphate System. Langmuir, 2008, 24, 7058-7060.	3.5	11
54	Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures. Biointerphases, 2010, 5, 120-130.	1.6	11

#	Article	IF	CITATIONS
55	The surface evolution and kinetic roughening during homoepitaxy of GaAs (001). Solid-State Electronics, 1994, 37, 1057-1063.	1.4	10
56	Using atomic force microscopy to investigate solution crystal growth. , 2001, , 361-380.		10
57	Control of Curvature in Highly Compliant Probe Cantilevers during Carbon Nanotube Growth. Nano Letters, 2007, 7, 3035-3040.	9.1	10
58	SURFACE EVOLUTION DURING MBE GROWTH. Surface Review and Letters, 1997, 04, 71-105.	1.1	9
59	Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres. Applied Physics A: Materials Science and Processing, 2012, 109, 15-23.	2.3	9
60	In situ characterization of Ti-peroxy gel during formation on titanium surfaces in hydrogen peroxide containing solutions. Materials Science and Engineering C, 2006, 26, 1408-1411.	7.3	8
61	Coupling in situ atomic force microscopy (AFM) and ultra-small-angle X-ray scattering (USAXS) to study the evolution of zinc morphology during electrodeposition within an imidazolium based ionic liquid electrolyte. Electrochimica Acta, 2020, 342, 136073.	5.2	8
62	Beyond Thermodynamics: Assessing the Dynamical Softness of Hydrated Ions from First Principles. Journal of Physical Chemistry Letters, 2021, 12, 11980-11986.	4.6	8
63	Atomic force microscopy and scanning tunneling microscopy studies of large-scale unstable growth formed during GaAs(001) homoepitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 30, 143-148.	3.5	7
64	Improving Nanoparticle Dispersion and Charge Transfer in Cadmium Telluride Tetrapod and Conjugated Polymer Blends. ACS Applied Materials & Interfaces, 2011, 3, 1077-1082.	8.0	6
65	Transformations of Ti-5Al-5V-5Cr-3Mo powder due to reuse in laser powder bed fusion: A surface analytical approach. Applied Surface Science, 2021, 564, 150433.	6.1	5
66	The Use of Scanning Probe Microscopy to Investigate Crystal-Fluid Interfaces. AIP Conference Proceedings, 2007, , .	0.4	4
67	Rapid In Situ Ligandâ€Exchange Process Used to Prepare 3D PbSe Nanocrystal Superlattice Infrared Photodetectors. Small, 2021, 17, e2101166.	10.0	4
68	Unraveling the Mechanism of Electrically Induced Adhesive Debonding: A Spectroâ€Microscopic Study. Advanced Materials Interfaces, 2022, 9, 2101447.	3.7	4
69	Xenon doping of glow discharge polymer by ion implantation. Journal of Applied Physics, 2012, 111, 096101.	2.5	3
70	Characteristics of the Oxides Films formed on Alloy C-22. Materials Research Society Symposia Proceedings, 2002, 757, II4.8.1.	0.1	2
71	Coupling In-Situ Techniques to Analyze Zinc Deposition and Dissolution for Energy Storage Applications. Materials Research Society Symposia Proceedings, 2013, 1491, 29.	0.1	2
72	Methods—Design Guidelines for Tubular Flow-through Electrodes for Use in Electroanalytical Studies of Redox Reaction Kinetics. Journal of the Electrochemical Society, 2021, 168, 043505.	2.9	2

#	Article	IF	CITATIONS
73	Changes in electric field noise due to thermal transformation of a surface ion trap. Physical Review B, 2022, 106, .	3.2	2
74	High voltage control and monitoring system for proportional chambers. IEEE Transactions on Nuclear Science, 1988, 35, 191-192.	2.0	1
75	AFM and STM Studies of Large Scale Unstable Growth Formed During GaAs (001) Homoepitaxy. Materials Research Society Symposia Proceedings, 1994, 340, 233.	0.1	1
76	Biological Modification in the Brushite Crystallization. Materials Research Society Symposia Proceedings, 2004, 823, W7.2.1.	0.1	1
77	Real-Time Dynamics during Recharging Cycles. ECS Transactions, 2013, 50, 13-17.	0.5	1
78	Suppression of low temperature magnetic ordering in samarium nanoparticles. Journal of Physics Condensed Matter, 2020, 32, 495803.	1.8	1
79	Interaction Between Titanium Implant Surfaces and Hydrogen Peroxide in Biologically Relevant Environments. Materials Research Society Symposia Proceedings, 2004, 823, W11.17.1.	0.1	0
80	In Situ Characterization of Surface Evolution on Titanium in Hydrogen Peroxide Containing Solutions. Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	0
81	In Situ Investigation of the Silver-CTAB System. Materials Research Society Symposia Proceedings, 2007, 1017, 122.	0.1	Ο
82	Inducing order using nanolaminate templates. Journal of Materials Research, 2011, 26, 194-204.	2.6	0
83	Controlled Superlattice Assembly $\hat{a} \in$ a Step Towards Superlattice Devices. ECS Meeting Abstracts, 2018, , .	0.0	0
84	In Situ Studies of Zinc Oxide Nucleation and Growth. ECS Meeting Abstracts, 2018, , .	0.0	0