
Lansun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of Unilateral and Bilateral Control Systems with State Feedback for Renewable Resource Management. Complexity, 2020, 2020, 1-16.	1.6	4
2	Homoclinic bifurcation of a state feedback impulsive controlled prey–predator system with Holling-II functional response. Nonlinear Dynamics, 2019, 98, 929-942.	5.2	10
3	State-Dependent Pulse Vaccination and Therapeutic Strategy in an SI Epidemic Model with Nonlinear Incidence Rate. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-10.	1.3	13
4	State feedback impulsive therapy to SIS model of animal infectious diseases. Physica A: Statistical Mechanics and Its Applications, 2019, 516, 222-232.	2.6	13
5	Chemostat Model of Competition between Plasmid-Bearing and Plasmid-Free Organism with the Impulsive State Feedback Control. Discrete Dynamics in Nature and Society, 2018, 2018, 1-10.	0.9	1
6	Dynamics of a plankton-nutrient chemostat model with hibernation and it described by impulsive switched systems. Journal of Applied Mathematics and Computing, 2017, 53, 583-598.	2.5	7
7	A kind of non-traditional biomanipulation model with constant releasing fish. Mathematical Methods in the Applied Sciences, 2017, 40, 4727.	2.3	3
8	Stability of a convex order one periodic solution of unilateral asymptotic type. Nonlinear Dynamics, 2017, 90, 83-93.	5.2	5
9	Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control. International Journal of Biomathematics, 2017, 10, 1750093.	2.9	14
10	A state feedback impulse model for computer worm control. Nonlinear Dynamics, 2016, 85, 1561-1569.	5.2	25
11	Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property. Applied Mathematics and Computation, 2015, 271, 905-922.	2.2	27
12	Dynamical analysis of a Lotka–Volterra competition system with impulsively linear invasion. Journal of Applied Mathematics and Computing, 2015, 48, 25-40.	2.5	1
13	Homoclinic bifurcation of prey–predator model with impulsive state feedback control. Applied Mathematics and Computation, 2014, 237, 282-292.	2.2	22
14	Periodic solution of the system with impulsive state feedback control. Nonlinear Dynamics, 2014, 78, 743-753.	5.2	36
15	Periodic solutions and homoclinic bifurcation of a predator–prey system with two types of harvesting. Nonlinear Dynamics, 2013, 73, 815-826.	5.2	24
16	Bifurcations and Periodic Solutions for an Algae-Fish Semicontinuous System. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.7	5
17	Dynamic Complexity of an Ivlev-Type Prey-Predator System with Impulsive State Feedback Control. Journal of Applied Mathematics, 2012, 2012, 1-17.	0.9	12
18	Extinction and Permanence of a General Predator-Prey System with Impulsive Perturbations. Journal of Applied Mathematics, 2012, 2012, 1-19.	0.9	0

#	Article	IF	CITATIONS
19	Dynamic Analysis of a Predator-Prey (Pest) Model with Disease in Prey and Involving an Impulsive Control Strategy. Journal of Applied Mathematics, 2012, 2012, 1-18.	0.9	3
20	HOMOCLINIC BIFURCATION IN SEMI-CONTINUOUS DYNAMIC SYSTEMS. International Journal of Biomathematics, 2012, 05, 1250059.	2.9	25
21	The genic mutation on dynamics of a predator–prey system with impulsive effect. Nonlinear Dynamics, 2012, 70, 141-153.	5.2	6
22	Dynamics of the genic mutational rate on a population system with birth pulse and impulsive input toxins in polluted environment. Journal of Applied Mathematics and Computing, 2012, 40, 445-457.	2.5	4
23	The effect of pulsed harvesting policy onÂtheÂinshore–offshore fishery model with the impulsive diffusion. Nonlinear Dynamics, 2011, 63, 537-545.	5.2	17
24	Bifurcation and chaos ofÂbiochemical reaction model withÂimpulsive perturbations. Nonlinear Dynamics, 2011, 63, 521-535.	5.2	13
25	Nonlinear modelling of chemostat model with time delay and impulsive effect. Nonlinear Dynamics, 2011, 63, 95-104.	5.2	6
26	Impulsive perturbations of a predator-prey system withÂmodified Leslie-Gower and Holling type II schemes. Journal of Applied Mathematics and Computing, 2011, 35, 119-134.	2.5	14
27	Dynamical behaviors of a delayed chemostat model with impulsive diffusion on nutrients. Journal of Applied Mathematics and Computing, 2011, 35, 443-457.	2.5	6
28	Dynamical behaviors of a biological management model with impulsive stocking juvenile predators andÂcontinuous harvesting adult predators. Journal of Applied Mathematics and Computing, 2011, 35, 483-495.	2.5	2
29	DYNAMICAL ANALYSIS OF A THREE-DIMENSIONAL PREDATOR-PREY MODEL WITH IMPULSIVE HARVESTING AND DIFFUSION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 453-465.	1.7	10
30	Qualitative analysis ofÂaÂvariable yield turbidostat model withÂimpulsive state feedback control. Journal of Applied Mathematics and Computing, 2010, 33, 193-208.	2.5	10
31	Impulsive state feedback control of the microorganism culture in a turbidostat. Journal of Mathematical Chemistry, 2010, 47, 1224-1239.	1.5	11
32	Dynamic analysis of lactic acid fermentation with impulsive input. Journal of Mathematical Chemistry, 2010, 47, 1189-1208.	1.5	3
33	Clobal Dynamics Behaviors of Viral Infection Model for Pest Management. Discrete Dynamics in Nature and Society, 2009, 2009, 1-16.	0.9	3
34	Nonlinear incidence rate of a pest management <i>SI</i> model with impulsive control strategy. Mathematical Methods in the Applied Sciences, 2009, 33, n/a-n/a.	2.3	0
35	Dynamic analysis of mathematical model of ethanol fermentation with gas stripping. Nonlinear Dynamics, 2009, 57, 13-23.	5.2	8
36	Chemical chaos in enzyme kinetics. Nonlinear Dynamics, 2009, 57, 135-142.	5.2	7

#	Article	IF	CITATIONS
37	The study of a ratio-dependent predator–prey model with stage structure in the prey. Nonlinear Dynamics, 2009, 58, 443-451.	5.2	36
38	Periodic solution of a turbidostat model with impulsive state feedback control. Nonlinear Dynamics, 2009, 58, 525-538.	5.2	27
39	Dynamic complexity of microbial pesticide model. Nonlinear Dynamics, 2009, 58, 539-552.	5.2	8
40	Dynamical analysis of a chemostat model with delayed response in growth and pulse input in polluted environment. Journal of Mathematical Chemistry, 2009, 46, 502-513.	1.5	20
41	Periodic solution of a turbidostat system with impulsive state feedback control. Journal of Mathematical Chemistry, 2009, 46, 1074-1086.	1.5	16
42	Periodic solution of a chemostat model with Beddington–DeAnglis uptake function and impulsive state feedback control. Journal of Theoretical Biology, 2009, 261, 23-32.	1.7	28
43	Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission. Applied Mathematical Modelling, 2009, 33, 1923-1932.	4.2	24
44	Species extinction and permanence in a prey–predator model with two-type functional responses and impulsive biological control. Nonlinear Dynamics, 2008, 52, 71-81.	5.2	26
45	Study of a Monod–Haldene type food chain chemostat with pulsed substrate. Journal of Mathematical Chemistry, 2008, 43, 210-226.	1.5	4
46	Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate. Journal of Mathematical Chemistry, 2008, 43, 338-349.	1.5	20
47	Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive input. Journal of Mathematical Chemistry, 2008, 43, 447-456.	1.5	4
48	Study of Lotka-volterra food chain chemostat with periodically varying dilution rate. Journal of Mathematical Chemistry, 2008, 43, 901-913.	1.5	6
49	Toxic action and antibiotic in the chemostat: permanence and extinction of a model with functional response. Journal of Mathematical Chemistry, 2008, 43, 1256-1272.	1.5	1
50	Analysis of a Beddington–DeAngelis food chain chemostat with periodically varying substrate. Journal of Mathematical Chemistry, 2008, 44, 467-481.	1.5	1
51	Dynamical behaviors of the brusselator system with impulsive input. Journal of Mathematical Chemistry, 2008, 44, 637-649.	1.5	9
52	An SEIRS epidemic model with two delays and pulse vaccination*. Journal of Systems Science and Complexity, 2008, 21, 217-225.	2.8	8
53	A STAGE-STRUCTURED SI ECO-EPIDEMIOLOGICAL MODEL WITH TIME DELAY AND IMPULSIVE CONTROLLING*. Journal of Systems Science and Complexity, 2008, 21, 427-440.	2.8	13
54	AN IMPULSIVE PREDATOR-PREY SYSTEM WITH BEDDINGTON–DEANGELIS FUNCTIONAL RESPONSE AND TIME DELAY. International Journal of Biomathematics, 2008, 01, 1-17.	2.9	55

#	Article	IF	CITATIONS
55	A Delayed Epidemic Model with Pulse Vaccination. Discrete Dynamics in Nature and Society, 2008, 2008, 1-12.	0.9	40
56	PERMANENCE AND GLOBAL STABILITY IN AN IMPULSIVE LOTKA–VOLTERRA N-SPECIES COMPETITIVE SYSTEM WITH BOTH DISCRETE DELAYS AND CONTINUOUS DELAYS. International Journal of Biomathematics, 2008, 01, 179-196.	2.9	63
57	DYNAMIC BEHAVIORS OF A KIND OF PREDATOR–PREY SYSTEM WITH IVLEV'S AND BEDDINGTON–DEANGELI: FUNCTIONAL RESPONSE AND IMPULSIVE RELEASE. Stochastics and Dynamics, 2008, 08, 667-681.	5' 1.2	Ο
58	PERMANENCE AND COMPLEXITY OF THE ECO-EPIDEMIOLOGICAL MODEL WITH IMPULSIVE PERTURBATION. International Journal of Biomathematics, 2008, 01, 121-132.	2.9	27
59	On a Periodic Time-Dependent Model of Population Dynamics with Stage Structure and Impulsive Effects. Discrete Dynamics in Nature and Society, 2008, 2008, 1-15.	0.9	5
60	GLOBAL ATTRACTIVITY OF A STAGE-STRUCTURE VARIABLE COEFFICIENTS PREDATOR-PREY SYSTEM WITH TIME DELAY AND IMPULSIVE PERTURBATIONS ON PREDATORS. International Journal of Biomathematics, 2008, 01, 197-208.	2.9	75
61	TWO DIFFERENT VACCINATION STRATEGIES IN AN SIR EPIDEMIC MODEL WITH SATURATED INFECTIOUS FORCE. International Journal of Biomathematics, 2008, 01, 147-160.	2.9	17
62	DYNAMICS OF A NONAUTONOMOUS SYSTEM WITH IMPULSIVE OUTPUT. International Journal of Biomathematics, 2008, 01, 225-238.	2.9	10
63	MODELING OF THE PREVENTION AND CONTROL OF FOREST PEST. Journal of Biological Systems, 2007, 15, 539-550.	1.4	2
64	DYNAMIC COMPLEXITIES IN AN EPIDEMIC MODEL WITH BIRTH PULSES AND PULSE CULLING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 521-533.	1.7	1
65	ON A PERIODIC TIME-DEPENDENT IMPULSIVE SYSTEM OF STRATEGIES FOR CONTROLLING THE APPLE SNAIL IN PADDY FIELDS. Journal of Biological Systems, 2007, 15, 397-408.	1.4	2
66	Profitless delays for permanence in a pure-delayed nonautonomous Lotka-Volterra competitive system with infinite delays and discrete delays. , 2007, , .		0
67	A impulsive infective transmission SI model for pest control. Mathematical Methods in the Applied Sciences, 2007, 30, 1169-1184.	2.3	22
68	Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration. Journal of Mathematical Chemistry, 2007, 42, 837-847.	1.5	52
69	Ultimate behavior of predator-prey system with constant harvesting of the prey impulsively. Journal of Applied Mathematics and Computing, 2006, 22, 149-158.	2.5	1
70	Extinction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively. Mathematical Methods in the Applied Sciences, 2006, 29, 415-425.	2.3	24
71	CHAOTIC BEHAVIOR OF A PERIODICALLY FORCED PREDATOR–PREY SYSTEM WITH BEDDINGTON–DEANGELI FUNCTIONAL RESPONSE AND IMPULSIVE PERTURBATIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2006, 09, 209-222.	S 1.4	6
72	OSCILLATION CRITERIA FOR A CLASS OF SECOND-ORDER IMPULSIVE DELAY DIFFERENCE EQUATIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2006, 09, 69-76.	1.4	4

#	Article	IF	CITATIONS
73	THE EFFECT OF SEASONAL HARVESTING ON A STAGE-STRUCTURED DISCRETE MODEL WITH BIRTH PULSES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 2575-2586.	1.7	1
74	IMPULSIVE SELECTIVE HARVESTING IN A LOGISTIC FISHERY MODEL WITH TIME DELAY. Journal of Biological Systems, 2006, 14, 91-99.	1.4	5
75	PERIODIC SOLUTIONS OF A DISCRETE TIME NONAUTONOMOUS TWO-SPECIES MUTUALISTIC SYSTEM WITH DELAYS. International Journal of Modeling, Simulation, and Scientific Computing, 2006, 09, 87-98.	1.4	5
76	DYNAMIC ANALYSIS OF A HOLLING I PREDATOR-PREY SYSTEM WITH MUTUAL INTERFERENCE CONCERNING PEST CONTROL. Journal of Biological Systems, 2005, 13, 45-58.	1.4	11
77	THE EFFECT OF IMPULSIVE SPRAYING PESTICIDE ON STAGE-STRUCTURED POPULATION MODELS WITH BIRTH PULSE. Journal of Biological Systems, 2005, 13, 31-44.	1.4	19
78	COMPLEX DYNAMICS OF ONE-PREY MULTI-PREDATOR SYSTEM WITH DEFENSIVE ABILITY OF PREY AND IMPULSIVE BIOLOGICAL CONTROL ON PREDATORS. International Journal of Modeling, Simulation, and Scientific Computing, 2005, 08, 483-495.	1.4	15
79	Harmless and Profitless Delays in Discrete Competitive Lotka–Volterra Systems. Applicable Analysis, 2004, 83, 411-431.	1.3	3
80	Persistence and global stability in a delayed predator-prey system with Holling-type functional response. ANZIAM Journal, 2004, 46, 121-141.	0.2	3
81	Optimal harvesting and stability for fishing models with stage structure in inshore-offshore areas. Applied Mathematics, 2003, 18, 151-160.	1.0	0
82	How Do the Spatial Structure and Time Delay Affect the Persistence of A Polluted Species. Applicable Analysis, 2003, 82, 253-267.	1.3	5
83	QUASIPERIODIC SOLUTIONS AND CHAOS IN A PERIODICALLY FORCED PREDATOR–PREY MODEL WITH AGE STRUCTURE FOR PREDATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 973-980.	1.7	32
84	The Effects of Impulsive Toxicant Input on a Population in a Polluted Environment. Journal of Biological Systems, 2003, 11, 265-274.	1.4	114
85	Necessary-Sufficient Conditions for Permanence and Extinction in Lotka-Volterra System with Discrete Delays. Applicable Analysis, 2002, 81, 575-587.	1.3	5
86	THE PERIODIC PREDATOR-PREY LOTKA–VOLTERRA MODEL WITH IMPULSIVE EFFECT. Journal of Mechanics in Medicine and Biology, 2002, 02, 267-296.	0.7	34
87	The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Mathematical and Computer Modelling, 2002, 36, 1039-1057.	2.0	127
88	Advanced Topics in Biomathematics. , 1998, , .		1