Peng Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/8929329/peng-huang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

289 23,918 149 74 h-index g-index citations papers 28,567 12.1 7.52 313 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
289	Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. <i>Nature Reviews Drug Discovery</i> , 2009 , 8, 579-91	64.1	3529
288	Nanotechnology for Multimodal Synergistic Cancer Therapy. <i>Chemical Reviews</i> , 2017 , 117, 13566-13638	68.1	949
287	Overcoming the Achillescheel of photodynamic therapy. <i>Chemical Society Reviews</i> , 2016 , 45, 6488-6519	58.5	858
286	Nanozyme: new horizons for responsive biomedical applications. <i>Chemical Society Reviews</i> , 2019 , 48, 3683-3704	58.5	568
285	Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. <i>Advanced Materials</i> , 2012 , 24, 5104-10	24	557
284	Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. <i>ACS Nano</i> , 2013 , 7, 5320-9	16.7	534
283	Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13958-13964	16.4	495
282	Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. <i>Chemical Society Reviews</i> , 2018 , 47, 5109-5124	58.5	450
281	Folic Acid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy. <i>Theranostics</i> , 2011 , 1, 240-50	12.1	438
280	Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. <i>Advanced Materials</i> , 2013 , 25, 3055-61	24	404
279	Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1229-1233	16.4	367
278	Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. <i>Biomaterials</i> , 2011 , 32, 9796-809	15.6	353
277	Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. <i>Chemical Society Reviews</i> , 2018 , 47, 6454-6472	58.5	315
276	Sequential Drug Release and Enhanced Photothermal and Photoacoustic Effect of Hybrid Reduced Graphene Oxide-Loaded Ultrasmall Gold Nanorod Vesicles for Cancer Therapy. <i>ACS Nano</i> , 2015 , 9, 9199	-269	284
275	RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. <i>Molecular Pharmaceutics</i> , 2010 , 7, 94-104	5.6	270
274	Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization. <i>Advanced Materials</i> , 2016 , 28, 7340-64	24	263
273	The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. <i>Biomaterials</i> , 2011 , 32, 9031-9	15.6	261

(2017-2016)

272	Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics. <i>ACS Nano</i> , 2016 , 10, 3453-60	16.7	259
271	Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. <i>Advanced Materials</i> , 2014 , 26, 6401-8	24	244
270	Graphene-based nanomaterials for bioimaging. Advanced Drug Delivery Reviews, 2016, 105, 242-254	18.5	237
269	Glucose Oxidase-Instructed Multimodal Synergistic Cancer Therapy. <i>Advanced Materials</i> , 2019 , 31, e180	8325	228
268	Ultrasmall Gold Nanorod Vesicles with Enhanced Tumor Accumulation and Fast Excretion from the Body for Cancer Therapy. <i>Advanced Materials</i> , 2015 , 27, 4910-7	24	226
267	Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. <i>Biomaterials</i> , 2011 , 32, 3447-58	15.6	225
266	Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. <i>Journal of Biological Chemistry</i> , 2005 , 280, 39485-92	5.4	206
265	Dual Phase-Controlled Synthesis of Uniform Lanthanide-Doped NaGdF4 Upconversion Nanocrystals Via an OA/Ionic Liquid Two-Phase System for In Vivo Dual-Modality Imaging. <i>Advanced Functional</i> <i>Materials</i> , 2011 , 21, 4470-4477	15.6	205
264	Stimuli-Responsive Programmed Specific Targeting in Nanomedicine. ACS Nano, 2016, 10, 2991-4	16.7	192
263	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nature Biomedical Engineering, 2018, 2, 865-877	19	184
262	Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. <i>Biomaterials</i> , 2013 , 34, 4643-54	15.6	182
261	Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8307-13	16.4	179
260	Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications. <i>Theranostics</i> , 2016 , 6, 2394-2413	12.1	165
259	Biodegradable Manganese-Doped Calcium Phosphate Nanotheranostics for Traceable Cascade Reaction-Enhanced Anti-Tumor Therapy. <i>ACS Nano</i> , 2019 , 13, 13985-13994	16.7	162
258	Development of endogenous enzyme-responsive nanomaterials for theranostics. <i>Chemical Society Reviews</i> , 2018 , 47, 5554-5573	58.5	161
257	Tumor-Specific Formation of Enzyme-Instructed Supramolecular Self-Assemblies as Cancer Theranostics. <i>ACS Nano</i> , 2015 , 9, 9517-27	16.7	160
256	Gold Nanoparticle Coated Carbon Nanotube Ring with Enhanced Raman Scattering and Photothermal Conversion Property for Theranostic Applications. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7005-15	16.4	160
255	Core-Satellite Polydopamine-Gadolinium-Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. <i>Advanced Materials</i> , 2017 , 29, 1701013	24	146

254	Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2006892	24	142
253	In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. <i>Small</i> , 2014 , 10, 1585-93, 1441	11	139
252	PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy. <i>Advanced Materials</i> , 2018 , 30, e1707112	24	138
251	Multimodal-Imaging-Guided Cancer Phototherapy by Versatile Biomimetic Theranostics with UV and Erradiation Protection. <i>Advanced Materials</i> , 2016 , 28, 3273-9	24	138
250	An aptamer-targeting photoresponsive drug delivery system using "off-on" graphene oxide wrapped mesoporous silica nanoparticles. <i>Nanoscale</i> , 2015 , 7, 6304-10	7.7	137
249	Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy. <i>Accounts of Chemical Research</i> , 2015 , 48, 2506-15	24.3	137
248	Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. <i>Biomaterials</i> , 2015 , 42, 94-102	15.6	134
247	Calcium-based biomaterials for diagnosis, treatment, and theranostics. <i>Chemical Society Reviews</i> , 2018 , 47, 357-403	58.5	131
246	Biodegradable Gold Nanovesicles with an Ultrastrong Plasmonic Coupling Effect for Photoacoustic Imaging and Photothermal Therapy. <i>Angewandte Chemie</i> , 2013 , 125, 14208-14214	3.6	125
245	NIR-Responsive On-Demand Release of CO from Metal Carbonyl-Caged Graphene Oxide Nanomedicine. <i>Advanced Materials</i> , 2015 , 27, 6741-6	24	124
244	Tri-stimuli-responsive biodegradable theranostics for mild hyperthermia enhanced chemotherapy. <i>Biomaterials</i> , 2017 , 126, 39-48	15.6	114
244		15.6 10	114
	Biomaterials, 2017 , 126, 39-48 Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent		,
243	Biomaterials, 2017, 126, 39-48 Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. <i>Green Chemistry</i> , 2010, 12, 2038	10	114
243	Biomaterials, 2017, 126, 39-48 Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. <i>Green Chemistry</i> , 2010, 12, 2038 Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. <i>Nano Letters</i> , 2018, 18, 5716-5725 Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy.	10	114
243 242 241	Biomaterials, 2017, 126, 39-48 Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. <i>Green Chemistry</i> , 2010, 12, 2038 Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. <i>Nano Letters</i> , 2018, 18, 5716-5725 Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. <i>Nanotechnology</i> , 2009, 20, 135102 Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained	10 11.5 3.4	114 113 113
243 242 241 240	Biomaterials, 2017, 126, 39-48 Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. <i>Green Chemistry</i> , 2010, 12, 2038 Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. <i>Nano Letters</i> , 2018, 18, 5716-5725 Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. <i>Nanotechnology</i> , 2009, 20, 135102 Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. <i>Biomaterials</i> , 2012, 33, 6447-55 Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT	10 11.5 3.4 15.6	114 113 113

(2020-2017)

236	Enhanced Afterglow Performance of Persistent Luminescence Implants for Efficient Repeatable Photodynamic Therapy. <i>ACS Nano</i> , 2017 , 11, 5864-5872	16.7	105
235	Durable Antibacterial and Nonfouling Cotton Textiles with Enhanced Comfort via Zwitterionic Sulfopropylbetaine Coating. <i>Small</i> , 2016 , 12, 3516-21	11	105
234	A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. <i>Nanoscale</i> , 2015 , 7, 20055-62	7.7	101
233	Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. <i>Nature Communications</i> , 2018 , 9, 5421	17.4	100
232	Mesoporous Polydopamine Carrying Manganese Carbonyl Responds to Tumor Microenvironment for Multimodal Imaging-Guided Cancer Therapy. <i>Advanced Functional Materials</i> , 2019 , 29, 1900095	15.6	96
231	Folic acid-conjugated LaF3:Yb,Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 14062-70	3.4	91
230	Light-Responsive Biodegradable Nanorattles for Cancer Theranostics. <i>Advanced Materials</i> , 2018 , 30, 1	70 <u>6</u> 450	90
229	A nanoscale graphene oxide-peptide biosensor for real-time specific biomarker detection on the cell surface. <i>Chemical Communications</i> , 2012 , 48, 9768-70	5.8	90
228	A Versatile Theranostic Nanoemulsion for Architecture-Dependent Multimodal Imaging and Dually Augmented Photodynamic Therapy. <i>Advanced Materials</i> , 2019 , 31, e1806444	24	87
227	PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters. <i>Biomaterials</i> , 2014 , 35, 9868-9876	15.6	86
226	Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy. <i>Biomaterials</i> , 2015 , 45, 18-26	15.6	86
225	Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study. <i>Nanoscale</i> , 2012 , 4, 7766-72	7.7	84
224	Dual-Stimuli Responsive Bismuth Nanoraspberries for Multimodal Imaging and Combined Cancer Therapy. <i>Nano Letters</i> , 2018 , 18, 6778-6788	11.5	84
223	Programmable NIR-II Photothermal-Enhanced Starvation-Primed Chemodynamic Therapy using Glucose Oxidase-Functionalized Ancient Pigment Nanosheets. <i>Small</i> , 2020 , 16, e2001518	11	83
222	Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies. <i>Nanoscale</i> , 2015 , 7, 2520-6	7.7	80
221	Magneto-Plasmonic Janus Vesicles for Magnetic Field-Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15297-15300	16.4	79
220	Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. <i>Materials Horizons</i> , 2019 , 6, 169-175	14.4	78
219	Glucose Oxidase-Instructed Traceable Self-Oxygenation/Hyperthermia Dually Enhanced Cancer Starvation Therapy. <i>Theranostics</i> , 2020 , 10, 1544-1554	12.1	78

218	Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of Cu and multimodal imaging-guided photothermal therapy. <i>Nanoscale</i> , 2017 , 9, 12609-12617	7.7	77
217	Dual-Stimuli Responsive Nanotheranostics for Multimodal Imaging Guided Trimodal Synergistic Therapy. <i>Small</i> , 2017 , 13, 1602580	11	75
216	Green controllable synthesis of silver nanomaterials on graphene oxide sheets via spontaneous reduction. <i>RSC Advances</i> , 2012 , 2, 3816	3.7	74
215	Recent Advances on Graphene Quantum Dots for Bioimaging Applications. <i>Frontiers in Chemistry</i> , 2020 , 8, 424	5	73
214	Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2018 , 45, 110-120	8.8	73
213	In vivo albumin labeling and lymphatic imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 208-13	11.5	73
212	Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. <i>Materials Letters</i> , 2010 , 64, 375-378	3.3	73
211	Marriage of Albumin-Gadolinium Complexes and MoS Nanoflakes as Cancer Theranostics for Dual-Modality Magnetic Resonance/Photoacoustic Imaging and Photothermal Therapy. <i>ACS Applied Materials & Description of the Completed Materials & Description of the Complete State of the Complete St</i>	9.5	72
210	VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. <i>Nanoscale</i> , 2013 , 5, 6857-66	7.7	71
209	Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars. <i>Small</i> , 2015 , 11, 1801-10	11	70
208	Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. <i>Nanoscale</i> , 2011 , 3, 3623-6	7.7	70
207	Smart Cancer Cell Targeting Imaging and Drug Delivery System by Systematically Engineering Periodic Mesoporous Organosilica Nanoparticles. <i>ACS Applied Materials & Design Companies</i> , 2016, 8, 2985.	- 93 5	69
206	Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy. <i>ACS Nano</i> , 2014 , 8, 12141-50	16.7	69
205	Manganese-Dioxide-Coating-Instructed Plasmonic Modulation of Gold Nanorods for Activatable Duplex-Imaging-Guided NIR-II Photothermal-Chemodynamic Therapy. <i>Advanced Materials</i> , 2021 , 33, e20	0 08 540) ⁶⁹
204	Protein-based photothermal theranostics for imaging-guided cancer therapy. <i>Nanoscale</i> , 2015 , 7, 16330	0-76.7	68
203	A novel quantum dots-based point of care test for syphilis. <i>Nanoscale Research Letters</i> , 2010 , 5, 875-81	5	68
202	Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. <i>Applied Materials Today</i> , 2019 , 15, 297-304	6.6	67
201	Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. <i>Journal of Nanobiotechnology</i> , 2013 , 11, 17	9.4	67

200	Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. <i>Theranostics</i> , 2020 , 10, 2453-2462	12.1	67
199	Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. <i>Chemical Engineering Journal</i> , 2020 , 400, 126009	14.7	66
198	A Melanin-Based Natural Antioxidant Defense Nanosystem for Theranostic Application in Acute Kidney Injury. <i>Advanced Functional Materials</i> , 2019 , 29, 1904833	15.6	65
197	Bio-mimetically synthesized Ag@BSA microspheres as a novel electrochemical biosensing interface for sensitive detection of tumor cells. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 656-62	11.8	65
196	Rolling up graphene oxide sheets into micro/nanoscrolls by nanoparticle aggregation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17441		63
195	Cyclodextrin-based polymer materials: From controlled synthesis to applications. <i>Progress in Polymer Science</i> , 2019 , 93, 1-35	29.6	62
194	Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer. <i>ACS Nano</i> , 2017 , 11, 9103-9111	16.7	62
193	Ratiometric Photoacoustic Molecular Imaging for Methylmercury Detection in Living Subjects. <i>Advanced Materials</i> , 2017 , 29, 1606129	24	60
192	Chiral guanosine 5?-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. <i>Nano Research</i> , 2012 , 5, 630-639	10	57
191	Biodegradable Calcium Phosphate Nanotheranostics with Tumor-Specific Activatable Cascade Catalytic Reactions-Augmented Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 20098	48.6	57
190	Surface Functionalization of Chemically Reduced Graphene Oxide for Targeted Photodynamic Therapy. <i>Journal of Biomedical Nanotechnology</i> , 2015 , 11, 117-25	4	56
189	Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy. <i>Nanoscale Research Letters</i> , 2009 , 4, 400-408	5	56
188	Copper selenide nanosnakes: bovine serum albumin-assisted room temperature controllable synthesis and characterization. <i>Nanoscale Research Letters</i> , 2010 , 5, 949-56	5	56
187	Janus Fe2O3/SiO2-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy. <i>Science Bulletin</i> , 2020 , 65, 564-572	10.6	55
186	Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. <i>Chemical Engineering Journal</i> , 2019 , 358, 634-642	14.7	55
185	Photoacoustic Probes for Molecular Detection: Recent Advances and Perspectives. <i>Small</i> , 2018 , 14, e18	0.0:782	54
184	Nanomaterials for photoacoustic imaging in the second near-infrared window. <i>Biomaterials Science</i> , 2019 , 7, 472-479	7.4	54
183	Melanin/polydopamine-based nanomaterials for biomedical applications. <i>Science China Chemistry</i> , 2019 , 62, 162-188	7.9	54

182	Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. <i>Accounts of Chemical Research</i> , 2018 , 51, 778-788	24.3	52
181	Self-Activated Electrical Stimulation for Effective Hair Regeneration a Wearable Omnidirectional Pulse Generator. <i>ACS Nano</i> , 2019 , 13, 12345-12356	16.7	51
180	Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases. <i>Nano Letters</i> , 2020 , 20, 3079-3089	11.5	51
179	3D bioprinting scaffold using alginate/polyvinyl alcohol bioinks. <i>Materials Letters</i> , 2017 , 189, 295-298	3.3	49
178	Tumor pH-Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. <i>Small</i> , 2019 , 15, e1902926	11	49
177	Selenium-Doped Carbon Quantum Dots Act as Broad-Spectrum Antioxidants for Acute Kidney Injury Management. <i>Advanced Science</i> , 2020 , 7, 2000420	13.6	48
176	Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging. <i>Nanoscale Research Letters</i> , 2013 , 8, 170	5	48
175	Protein-directed solution-phase green synthesis of BSA-conjugated M(x)Se(y) (M = Ag, Cd, Pb, Cu) nanomaterials. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 1156-62	4.5	47
174	3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. <i>Acta Biomaterialia</i> , 2019 , 92, 37-47	10.8	46
173	Gram scale synthesis of superparamagnetic Fe3O4 nanoparticles and fluid via a facile solvothermal route. <i>CrystEngComm</i> , 2011 , 13, 1782-1785	3.3	46
172	Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. <i>Materials Horizons</i> , 2019 , 6, 846-870	14.4	44
171	Photoacoustic and Colorimetric Visualization of Latent Fingerprints. ACS Nano, 2015, 9, 12344-8	16.7	44
170	Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy. <i>Angewandte Chemie</i> , 2017 , 129, 1249-1253	3.6	43
169	Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 10554-10558	9.5	43
168	Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin "Nanoglue"-Based Nanotheranostics. <i>ACS Nano</i> , 2020 , 14, 5560-5569	16.7	43
167	Multifunctional biodegradable mesoporous microspheres of Eu-doped amorphous calcium phosphate: microwave-assisted preparation, pH-sensitive drug release, and bioimaging application. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7132-7140	7.3	43
166	In Vivo Near-Infrared Fluorescence and Photoacoustic Dual-Modal Imaging of Endogenous Alkaline Phosphatase. <i>Analytical Chemistry</i> , 2019 , 91, 7112-7117	7.8	42
165	Light-Triggered Transformable Ferrous Ion Delivery System for Photothermal Primed Chemodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6047-6054	16.4	42

(2020-2011)

164	A general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system. <i>Chemical Communications</i> , 2011 , 47, 9510-2	5.8	41
163	Conquering the Hypoxia Limitation for Photodynamic Therapy. <i>Advanced Materials</i> , 2021 , 33, e2103978	24	41
162	Six Birds with One Stone: Versatile Nanoporphyrin for Single-Laser-Triggered Synergistic Phototheranostics and Robust Immune Activation. <i>Advanced Materials</i> , 2020 , 32, e2004481	24	40
161	Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces. <i>Nanoscale</i> , 2016 , 8, 14814-20	7.7	39
160	Black Phosphorus Nanosheets for Mild Hyperthermia-Enhanced Chemotherapy and Chemo-Photothermal Combination Therapy. <i>Nanotheranostics</i> , 2017 , 1, 208-216	5.6	38
159	Synthesis and Characterization of Bovine Serum Albumin-Conjugated Copper Sulfide Nanocomposites. <i>Journal of Nanomaterials</i> , 2010 , 2010, 1-6	3.2	38
158	A general strategy for metallic nanocrystals synthesis in organic medium. <i>Chemical Communications</i> , 2010 , 46, 4800-2	5.8	38
157	Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system. <i>Chemistry - A European Journal</i> , 2012 , 18, 5954-69	4.8	37
156	Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells. <i>Nanoscale Research Letters</i> , 2011 , 6, 44	5	35
155	Multifunctional Core@Shell Magnetic Nanoprobes for Enhancing Targeted Magnetic Resonance Imaging and Fluorescent Labeling in Vitro and in Vivo. <i>ACS Applied Materials & Diterfaces</i> , 2017 , 9, 17777-17785	9.5	34
154	Gold nanorod embedded large-pore mesoporous organosilica nanospheres for gene and photothermal cooperative therapy of triple negative breast cancer. <i>Nanoscale</i> , 2017 , 9, 1466-1474	7.7	34
153	Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. <i>Nano Today</i> , 2020 , 35, 100987	17.9	33
152	Polypeptide-Based Theranostics with Tumor-Microenvironment-Activatable Cascade Reaction for Chemo-ferroptosis Combination Therapy. <i>ACS Applied Materials & District Chemo-ferroptosis</i> 2020, 12, 20271-2028	o ^{9.5}	32
151	Cascade Reactions Catalyzed by Planar Metal-Organic Framework Hybrid Architecture for Combined Cancer Therapy. <i>Small</i> , 2020 , 16, e2004016	11	32
150	Janus nanoparticles in cancer diagnosis, therapy and theranostics. <i>Biomaterials Science</i> , 2019 , 7, 1262-12	27.54	31
149	Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes. <i>Nature Protocols</i> , 2016 , 11, 2287-2299	18.8	31
148	Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 4859-67	1.3	31
147	One stone, three birds: one AIEgen with three colors for fast differentiation of three pathogens. <i>Chemical Science</i> , 2020 , 11, 4730-4740	9.4	31

146	Superparamagnetic FeO-PEG-FA@Ce6 Nanoprobes for in Vivo Dual-mode Imaging and Targeted Photodynamic Therapy. <i>Scientific Reports</i> , 2016 , 6, 36187	4.9	30
145	Dendrimer-modified gold nanorods as efficient controlled gene delivery system under near-infrared light irradiation. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e137-9	11.7	30
144	Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e33-4	11.7	29
143	Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging and Hyperthermia Therapy of Prostate Cancer. <i>Nano Biomedicine and Engineering</i> , 2009 , 1,	2.9	29
142	Engineered PD-L1-Expressing Platelets Reverse New-Onset Type 1 Diabetes. <i>Advanced Materials</i> , 2020 , 32, e1907692	24	29
141	Electrospinning of Heparin Encapsulated P(LLA-CL) Core/Shell Nanofibers. <i>Nano Biomedicine and Engineering</i> , 2010 , 2,	2.9	28
140	CD146-Targeted Multimodal Image-Guided Photoimmunotherapy of Melanoma. <i>Advanced Science</i> , 2019 , 6, 1801237	13.6	28
139	Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. <i>ACS Nano</i> , 2021 , 15, 1627-1639	16.7	28
138	Development of Sialic Acid-coated Nanoparticles for Targeting Cancer and Efficient Evasion of the Immune System. <i>Theranostics</i> , 2017 , 7, 962-973	12.1	27
137	Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging. <i>ACS Nano</i> , 2017 , 11, 12193-12201	16.7	27
136	Nanostructured Calcium Phosphates: Preparation and Their Application in Biomedicine. <i>Nano Biomedicine and Engineering</i> , 2012 , 4,	2.9	27
135	Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds. <i>Chemical Engineering Journal</i> , 2020 , 396, 125081	14.7	26
134	Radiolabeled polyoxometalate clusters: Kidney dysfunction evaluation and tumor diagnosis by positron emission tomography imaging. <i>Biomaterials</i> , 2018 , 171, 144-152	15.6	26
133	Engineering of Nanoscale Coordination Polymers with Biomolecules for Advanced Applications. <i>Coordination Chemistry Reviews</i> , 2019 , 399, 213039-213039	23.2	25
132	Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications. <i>Nanoscale Horizons</i> , 2020 , 5, 1293-1302	10.8	25
131	Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. <i>Theranostics</i> , 2020 , 10, 36-49	12.1	25
130	In Vivo Chemoselective Photoacoustic Imaging of Copper(II) in Plant and Animal Subjects. <i>Small</i> , 2019 , 15, e1803866	11	25
129	Synthesis of ultrasmall nucleotide-functionalized superparamagnetic Fe2O3 nanoparticles. <i>CrystEngComm</i> , 2011 , 13, 4810	3.3	24

(2021-2008)

128	Preparation of purpurin-18 loaded magnetic nanocarriers in cottonseed oil for photodynamic therapy. <i>Materials Letters</i> , 2008 , 62, 2844-2847	3.3	24
127	Biomimetic Nanoemulsion for Synergistic Photodynamic-Immunotherapy Against Hypoxic Breast Tumor. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10647-10653	16.4	24
126	Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function. <i>Nano Research</i> , 2019 , 12, 637-642	10	24
125	Radiolabeled pertuzumab for imaging of human epidermal growth factor receptor 2 expression in ovarian cancer. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2017 , 44, 1296-1305	8.8	23
124	One-step synthesis of Fe3O4@C nanotubes for the immobilization of adriamycin. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12224		23
123	In Vivo Photoacoustic Detection and Imaging of Peroxynitrite. <i>Analytical Chemistry</i> , 2018 , 90, 9381-938	5 7.8	23
122	Dual-stimuli responsive nanotheranostics for mild hyperthermia enhanced inhibition of Wnt/Etatenin signaling. <i>Biomaterials</i> , 2020 , 232, 119709	15.6	22
121	Functional Magnetic Graphene Composites for Biosensing. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	21
120	Genome-wide DNA methylation analysis reveals significant impact of long-term ambient air pollution exposure on biological functions related to mitochondria and immune response. <i>Environmental Pollution</i> , 2020 , 264, 114707	9.3	21
119	Mercaptopropionic acid-capped Mn(2+):ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications. <i>Nanoscale</i> , 2014 , 6, 12345-9	7.7	21
118	A symmetrical fluorous dendron-cyanine dye-conjugated bimodal nanoprobe for quantitative 19F MRI and NIR fluorescence bioimaging. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1326-33	10.1	21
117	Multifunctional Magnesium Organic Framework-Based Microneedle Patch for Accelerating Diabetic Wound Healing. <i>ACS Nano</i> , 2021 ,	16.7	21
116	Nanomedicines for Renal Management: From Imaging to Treatment. <i>Accounts of Chemical Research</i> , 2020 , 53, 1869-1880	24.3	21
115	Ceria Nanozymes with Preferential Renal Uptake for Acute Kidney Injury Alleviation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 56830-56838	9.5	21
114	Enhancing Light and X-Ray Charging in Persistent Luminescence Nanocrystals for Orthogonal Afterglow Anti-Counterfeiting. <i>Advanced Functional Materials</i> , 2021 , 31, 2009920	15.6	21
113	Plasmonic Gold Nanovesicles for Biomedical Applications. <i>Small Methods</i> , 2019 , 3, 1800394	12.8	21
112	Quantum Dots: NIR-Emitting Quantum Dot-Encoded Microbeads through Membrane Emulsification for Multiplexed Immunoassays (Small 19/2013). <i>Small</i> , 2013 , 9, 3364-3364	11	20
111	Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. <i>Biomaterials</i> , 2021 , 271, 120706	15.6	20

110	In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes based on small size effect. <i>NPG Asia Materials</i> , 2017 , 9, e383-e383	10.3	19
109	Reprogrammable ultra-fast shape-transformation of macroporous composite hydrogel sheets. Journal of Materials Chemistry B, 2017 , 5, 2883-2887	7.3	19
108	Drug nanocrystals for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018 , 10, e1499	9.2	19
107	Large-scale immuno-magnetic cell sorting of T cells based on a self-designed high-throughput system for potential clinical application. <i>Nanoscale</i> , 2017 , 9, 13592-13599	7.7	19
106	Chemotherapeutic drug-DNA hybrid nanostructures for anti-tumor therapy. <i>Materials Horizons</i> , 2021 , 8, 78-101	14.4	19
105	Labeling adipose derived stem cell sheet by ultrasmall super-paramagnetic FeO nanoparticles and magnetic resonance tracking in vivo. <i>Scientific Reports</i> , 2017 , 7, 42793	4.9	18
104	Gold-Nanobipyramid-Based Nanotheranostics for Dual-Modality Imaging-Guided Phototherapy. <i>ACS Applied Materials & District Materials & </i>	9.5	18
103	ImmunoPET imaging of CD38 in murine lymphoma models using Zr-labeled daratumumab. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2018 , 45, 1372-1381	8.8	18
102	3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800034	5.5	18
101	Aggregation induced photoacoustic detection of mercury (II) ions using quaternary ammonium group-capped gold nanorods. <i>Talanta</i> , 2018 , 187, 65-72	6.2	18
100	In vivo targeted therapy of gastric tumors via the mechanical rotation of a flower-like Fe3O4@Au nanoprobe under an alternating magnetic field. <i>NPG Asia Materials</i> , 2017 , 9, e408-e408	10.3	18
99	Antibody and fragment-based PET imaging of CTLA-4+ T-cells in humanized mouse models. <i>American Journal of Cancer Research</i> , 2019 , 9, 53-63	4.4	18
98	Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. <i>ACS Nano</i> , 2020 ,	16.7	17
97	Recent Advances in Self-Exciting Photodynamic Therapy. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 594491	5.8	17
96	Cancer nanotheranostics in the second near-infrared window. View, 2021, 2, 20200075	7.8	17
95	Highly photostable croconium dye-anchored cell membrane vesicle for tumor pH-responsive duplex imaging-guided photothermal therapy. <i>Biomaterials</i> , 2021 , 267, 120454	15.6	17
94	Salinomycin exerts anti-colorectal cancer activity by targeting the Etatenin/T-cell factor complex. <i>British Journal of Pharmacology</i> , 2019 , 176, 3390-3406	8.6	16
93	3D bioprinting of hydrogel-based biomimetic microenvironments. <i>Journal of Biomedical Materials</i> Research - Part B Applied Biomaterials, 2019 , 107, 1695-1705	3.5	16

92	3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration. <i>Advanced Science</i> , 2021 , 8, e2100894	13.6	16	
91	Metal peroxides for cancer treatment. <i>Bioactive Materials</i> , 2021 , 6, 2698-2710	16.7	16	
90	Programmable starving-photodynamic synergistic cancer therapy. Science China Materials, 2020, 63, 61	1 - 6119	15	
89	Graphene-Based Nanomaterials in Bioimaging 2018 , 247-287		14	
88	pH-Responsive Nanoprobe for In Vivo Photoacoustic Imaging of Gastric Acid. <i>Analytical Chemistry</i> , 2019 , 91, 13570-13575	7.8	14	
87	Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates. <i>Nanoscale Research Letters</i> , 2013 , 8, 168	5	14	
86	A near-infrared turn-on probe for in vivo chemoselective photoacoustic detection of fluoride ion. <i>Dyes and Pigments</i> , 2019 , 165, 408-414	4.6	14	
85	Biodegradable Polymers as a Noncoding miRNA Nanocarrier for Multiple Targeting Therapy of Human Hepatocellular Carcinoma. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801318	10.1	13	
84	Enhanced All-Optical Modulation of Terahertz Waves on the Basis of Manganese Ferrite Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 21634-21640	3.8	13	
83	Plasmon-activated nanozymes with enhanced catalytic activity by near-infrared light irradiation. <i>Chemical Communications</i> , 2020 , 56, 1784-1787	5.8	13	
82	Cancer Immunotherapy: PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy (Adv. Mater. 22/2018). <i>Advanced Materials</i> , 2018 , 30, 1870152	24	13	
81	In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy <i>Nature Communications</i> , 2022 , 13, 1298	17.4	13	
8o	Melanin-instructed biomimetic synthesis of copper sulfide for cancer phototheranostics. <i>Chemical Engineering Journal</i> , 2020 , 388, 124232	14.7	12	
79	Magneto-Plasmonic Janus Vesicles for Magnetic Field-Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. <i>Angewandte Chemie</i> , 2016 , 128, 15523-15526	3.6	12	
78	Biodegradable Self-Assembled Ultrasmall Nanodots as Reactive Oxygen/Nitrogen Species Scavengers for Theranostic Application in Acute Kidney Injury. <i>Small</i> , 2021 , 17, e2005113	11	12	
77	Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine Models. <i>Molecular Pharmaceutics</i> , 2018 , 15, 1627-1634	5.6	11	
76	Superparamagnetic Fe3O4Ag hybrid nanocrystals as a potential contrast agent for CT imaging. <i>CrystEngComm</i> , 2012 , 14, 7556	3.3	11	
75	Dual-factor triggered fluorogenic nanoprobe for ultrahigh contrast and subdiffraction fluorescence imaging. <i>Biomaterials</i> , 2013 , 34, 6194-201	15.6	11	

74	Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy. <i>Nanoscale</i> , 2020 , 12, 7174-7179	7.7	11
73	Dual-Stimuli-Responsive Nanotheranostics for Dual-Targeting Photothermal-Enhanced Chemotherapy of Tumor. <i>ACS Applied Materials & Description of Tumor. ACS Applied Materials & Description of Tumor. Description of T</i>	9.5	11
72	A welding phenomenon of dissimilar nanoparticles in dispersion. <i>Nature Communications</i> , 2019 , 10, 219	17.4	11
71	Non-invasive monitoring of in vivo bone regeneration based on alkaline phosphatase-responsive scaffolds. <i>Chemical Engineering Journal</i> , 2021 , 408, 127959	14.7	11
70	Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. <i>Advanced Science</i> , 2021 , 8, e2102587	13.6	11
69	Synthesis of ultra-long hierarchical ZnO whiskers in a hydrothermal system for dye-sensitised solar cells. <i>RSC Advances</i> , 2016 , 6, 109406-109413	3.7	10
68	Preparation of FeCO3He3O4 nanoparticles and flower-like assembliesvia a one-step hydrothermal method. <i>CrystEngComm</i> , 2011 , 13, 6950	3.3	10
67	Dual-labeled pertuzumab for multimodality image-guided ovarian tumor resection. <i>American Journal of Cancer Research</i> , 2019 , 9, 1454-1468	4.4	10
66	A hierarchically ordered compacted coil scaffold for tissue regeneration. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	10
65	3D Printed Enzyme-Functionalized Scaffold Facilitates Diabetic Bone Regeneration. <i>Advanced Functional Materials</i> , 2021 , 31, 2101372	15.6	10
64	Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multi-Stage Augmented Synergistic Therapy <i>Advanced Materials</i> , 2022 , e2200062	24	10
63	ImmunoPET Imaging of CD146 in Murine Models of Intrapulmonary Metastasis of Non-Small Cell Lung Cancer. <i>Molecular Pharmaceutics</i> , 2017 , 14, 3239-3247	5.6	9
62	Recent Advances in Croconaine Dyes for Bioimaging and Theranostics. <i>Bioconjugate Chemistry</i> , 2020 , 31, 2072-2084	6.3	9
61			
<u> </u>	In Situ Sprayed Starvation/chemodynamic Therapeutic Gel for Post-surgical Treatment of IDH1 Glioma. <i>Advanced Materials</i> , 2021 , e2103980	24	8
60		2.4	8
	Glioma. Advanced Materials, 2021, e2103980 3D bioprinting of alginate scaffolds with controlled micropores by leaching of recrystallized salts.		
60	Glioma. Advanced Materials, 2021, e2103980 3D bioprinting of alginate scaffolds with controlled micropores by leaching of recrystallized salts. Polymer Bulletin, 2019, 76, 6077-6088 Ultrasmall platinum nanozymes as broad-spectrum antioxidants for theranostic application in acute	2.4	8

(2016-2020)

56	A dual-round signal amplification strategy for colorimetric/photoacoustic/fluorescence triple read-out detection of prostate specific antigen. <i>Chemical Communications</i> , 2020 , 56, 4942-4945	5.8	7	
55	Temporal-spatially transformed synthesis and formation mechanism of gold bellflowers. <i>Nanoscale</i> , 2016 , 8, 7430-4	7.7	7	
54	Preparation and characterization of near-infrared region absorption enhancer carbon nanotubes hybridmaterials. <i>Nano Biomedicine and Engineering</i> , 2010 , 2,	2.9	7	
53	Mild hyperthermia-enhanced chemo-photothermal synergistic therapy using doxorubicin-loaded gold nanovesicles. <i>Chinese Chemical Letters</i> , 2021 , 32, 2411-2414	8.1	7	
52	NIR-II light-responsive biodegradable shape memory composites based on cuprorivaite nanosheets for enhanced tissue reconstruction. <i>Chemical Engineering Journal</i> , 2021 , 419, 129437	14.7	7	
51	Synthesis of Highly Dispersed Fe3O4 Submicrometer Spheres in a One-Pot Anion-induced Solvothermal System. <i>Journal of the Chinese Chemical Society</i> , 2017 , 64, 217-223	1.5	6	
50	Photo-triggered Drug Delivery Systems for Neuron-related Applications. <i>Current Medicinal Chemistry</i> , 2019 , 26, 1406-1422	4.3	6	
49	A Versatile Calcium Phosphate Nanogenerator for Tumor Microenvironment-activated Cancer Synergistic Therapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2101563	10.1	6	
48	Theranostic multimodal gold nanoclusters. <i>Nature Biomedical Engineering</i> , 2020 , 4, 668-669	19	6	
47	Asymmetric total synthesis of tetrahydroprotoberberine derivatives and evaluation of their binding affinities at dopamine receptors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2017 , 27, 1437-1440	2.9	5	
46	Facile synthesis of ternary CdMnS QD-based hollow nanospheres as fluorescent/magnetic probes for bioimaging. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 1208-1212	7.3	5	
45	Metal ion-directed solution-phase tailoring: from large-area graphene oxide into nanoscale pieces. <i>Nanoscale Research Letters</i> , 2013 , 8, 226	5	5	
44	The radiosensitization of melanoma cells by gold nanorods irradiated with MV X-ray. <i>Nano Biomedicine and Engineering</i> , 2012 , 4,	2.9	5	
43	In-situ TiO decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics <i>Journal of Nanobiotechnology</i> , 2022 , 20, 53	9.4	5	
42	Genome-wide methylation and expression analyses reveal the epigenetic landscape of immune-related diseases for tobacco smoking. <i>Clinical Epigenetics</i> , 2021 , 13, 215	7.7	5	
41	Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. <i>Nano Letters</i> , 2021 , 21, 9706-97	14 1.5	5	
40	Salinomycin nanocrystals for colorectal cancer treatment through inhibition of Wnt/Etatenin signaling. <i>Nanoscale</i> , 2020 , 12, 19931-19938	7.7	5	
39	Advances on the Use of Biodegradable Proteins/Peptides in Photothermal Theranostics. <i>Journal of Nanomaterials</i> , 2016 , 2016, 1-10	3.2	5	

38	Hydrothermal Synthesis of Monodispersed BaGdF5:Yb/Er Nanoparticles for CT and MR Imaging. Journal of the Chinese Chemical Society, 2016 , 63, 977-984	1.5	5
37	A photothermally responsive nanoprobe for bioimaging based on Edman degradation. <i>Nanoscale</i> , 2016 , 8, 10553-7	7.7	5
36	Recent advances in fluorescence imaging of alkaline phosphatase. <i>Chinese Chemical Letters</i> , 2021 , 32, 1316-1330	8.1	5
35	Bioactive NIR-II Light-Responsive Shape Memory Composite Based on Cuprorivaite Nanosheets for Endometrial Regeneration <i>Advanced Science</i> , 2022 , e2102220	13.6	5
34	Activatable NIR-II Fluorescence Probe for Highly Sensitive and Selective Visualization of Glutathione <i>Analytical Chemistry</i> , 2021 , 93, 17103-17109	7.8	5
33	Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury <i>Nature Communications</i> , 2022 , 13, 2513	17.4	5
32	Cortico-subthalamic Coherence in a Patient With Dystonia Induced by Chorea-Acanthocytosis: A Case Report. <i>Frontiers in Human Neuroscience</i> , 2019 , 13, 163	3.3	4
31	Cancer Theranostics: A Versatile Theranostic Nanoemulsion for Architecture-Dependent Multimodal Imaging and Dually Augmented Photodynamic Therapy (Adv. Mater. 21/2019). <i>Advanced Materials</i> , 2019 , 31, 1970155	24	4
30	Integrative Analysis of Epigenome and Transcriptome Data Reveals Aberrantly Methylated Promoters and Enhancers in Hepatocellular Carcinoma. <i>Frontiers in Oncology</i> , 2021 , 11, 769390	5.3	4
29	Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 365	9.4	4
28	Graphene-semiconductor nanocomposites for cancer phototherapy. <i>Biomedical Materials (Bristol)</i> , 2021 , 16, 022007	3.5	4
27	Weaving Enzymes with Polymeric Shells for Biomedical Applications. <i>Advanced Materials</i> , 2021 , 33, e200	0 84 38	4
26	Controllable Synthesis of Iron Sulfide/CNT Nanocomposites in Solvothermal System. <i>Crystal Research and Technology</i> , 2019 , 54, 1900029	1.3	3
25	Preparation of surface dendrimer-modified gold nanorods by round-trip phase transfer ligand exchange. <i>Journal of Physics: Conference Series</i> , 2009 , 188, 012031	0.3	3
24	Preparation and stability of strongly luminescent CdSe/Cd(OH)2/SiO2 nanocomposite particles in aqueous solution. <i>Colloid Journal</i> , 2008 , 70, 734-739	1.1	3
23	Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. <i>Theranostics</i> , 2021 , 11, 9904-9917	12.1	3
22	Deep Brain Stimulation for Parkinson@ Disease During the COVID-19 Pandemic: Patient Perspective. <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 628105	3.3	3
21	STING-activating drug delivery systems: Design strategies and biomedical applications. <i>Chinese Chemical Letters</i> , 2021 , 32, 1615-1625	8.1	3

20	Light-Triggered Transformable Ferrous Ion Delivery System for Photothermal Primed Chemodynamic Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 6112-6119	3.6	3
19	Biomimetic Nanoemulsion for Synergistic Photodynamic-Immunotherapy Against Hypoxic Breast Tumor. <i>Angewandte Chemie</i> , 2021 , 133, 10742-10748	3.6	3
18	Multiscale Hierarchical Architecture-Based Bioactive Scaffolds for Versatile Tissue Engineering <i>Advanced Healthcare Materials</i> , 2022 , e2102837	10.1	3
17	Graphene as 2D Nano-Theranostic Materials for Cancer 2018 , 97-124		2
16	Nanozyme catalyzed cascade reaction for enhanced chemodynamic therapy of low-H2O2 tumor. <i>Applied Materials Today</i> , 2022 , 26, 101357	6.6	2
15	Photoregulated plasmon enhanced controllable hydrogen sulfide delivery for photothermal augmented gas therapy. <i>Applied Materials Today</i> , 2022 , 26, 101313	6.6	2
14	Comparison of Gold Nanospheres, Nanorods, Nanocages and Nanoflowers for Combined Photothermal-Radiotherapy of Cancer. <i>Nano</i> , 2021 , 16, 2150037	1.1	2
13	Inorganic cancer phototheranostics in second biowindow. APL Materials, 2021, 9, 070901	5.7	2
12	When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments. <i>IEEE Nanotechnology Magazine</i> , 2021 , 15, 29-43	1.7	2
11	Recent Advances in Gold Nanorods-Based Cancer Theranostics. Advanced NanoBiomed Research,21000	2 9 b	2
10	Rbktitelbild: Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy (Angew. Chem. 5/2017). <i>Angewandte Chemie</i> , 2017 , 129, 1446-1446	3.6	1
9	Photothermal Therapy: Reversibly Extracellular pH Controlled Cellular Uptake and Photothermal Therapy by PEGylated Mixed-Charge Gold Nanostars (Small 15/2015). <i>Small</i> , 2015 , 11, 1738-1738	11	1
8	Near-infrared probes for luminescence lifetime imaging <i>Nanotheranostics</i> , 2022 , 6, 91-102	5.6	1
7	Cover Image, Volume 10, Issue 3. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2018 , 10, e1525	9.2	1
6	Engineering Bacteria and Bionic Bacterial Derivatives with Nanoparticles for Cancer Therapy <i>Small</i> , 2021 , e2104643	11	1
5	Biodegradable Nanodots: Biodegradable Self-Assembled Ultrasmall Nanodots as Reactive Oxygen/Nitrogen Species Scavengers for Theranostic Application in Acute Kidney Injury (Small 8/2021). <i>Small</i> , 2021 , 17, 2170033	11	О
4	Integrating the Epigenome and Transcriptome of Hepatocellular Carcinoma to Identify Systematic Enhancer Aberrations and Establish an Aberrant Enhancer-Related Prognostic Signature <i>Frontiers in Cell and Developmental Biology</i> , 2022 , 10, 827657	5.7	0
3	LRP11-AS1 promotes the proliferation and migration of triple negative breast cancer cells via the miR-149-3p/NRP2 axis <i>Cancer Cell International</i> , 2022 , 22, 116	6.4	Ο

	Cancer Theranostics: Six Birds with One Stone: Versatile Nanoporphyrin for Single-Laser-Triggered	
2	Synergistic Phototheranostics and Robust Immune Activation (Adv. Mater. 48/2020). Advanced	2
	Materials. 2020. 32, 2070360	

24

Rāktitelbild: Light-Triggered Transformable Ferrous Ion Delivery System for Photothermal Primed Chemodynamic Therapy (Angew. Chem. 11/2021). *Angewandte Chemie*, **2021**, 133, 6252-6252

3.6