Stefan Bittner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929230/publications.pdf

Version: 2024-02-01

414414 567281 1,019 47 15 32 citations h-index g-index papers 48 48 48 959 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Sensitive control of broad-area semiconductor lasers by cavity shape. APL Photonics, 2022, 7, .	5.7	8
2	Massively parallel ultrafast random bit generation with a chip-scale laser. Science, 2021, 371, 948-952.	12.6	64
3	Möbius strip microlasers. , 2021, , .		O
4	Highly parallel ultra-fast random number generation from a stable-cavity broad-area semiconductor laser. , 2021, , .		0
5	Möbius Strip Microlasers: A Testbed for Non-Euclidean Photonics. Physical Review Letters, 2021, 127, 203901.	7.8	15
6	Broad-area semiconductor laser for ultrafast parallel random number generation. , 2021, , .		0
7	Parallel Generation of Random Numbers Using a Broad-area Stable-cavity Semiconductor Laser. , 2021, ,		O
8	Ultrafast parallel random number generation with a chip-scale semiconductor laser. , 2021, , .		0
9	Spatial structure of lasing modes in wave-chaotic semiconductor microcavities. New Journal of Physics, 2020, 22, 083002.	2.9	13
10	Spatio-temporal dynamics of highly multimode semiconductor lasers. , 2020, , .		0
11	Three-dimensional micro-billiard lasers: The square pyramid. Europhysics Letters, 2019, 126, 64004.	2.0	8
12	Angular Memory Effect of Transmission Eigenchannels. Physical Review Letters, 2019, 123, 203901.	7.8	20
13	Electrically pumped semiconductor laser with low spatial coherence and directional emission. Applied Physics Letters, 2019, 115, .	3.3	22
14	Complex lasers with controllable coherence. Nature Reviews Physics, 2019, 1, 156-168.	26.6	97
15	Three-Dimensional Pyramid Microlasers. , 2019, , .		O
16	Multimode lasing in wave-chaotic semiconductor microlasers. Physical Review A, 2019, 100, .	2.5	9
17	Random-laser dynamics with temporally modulated pump. Physical Review A, 2019, 99, .	2.5	7
18	Dielectric equilateral triangle microresonators: integral equations and semiclassical physics approaches. Optical Engineering, 2019, 58, 1.	1.0	4

#	Article	lF	CITATIONS
19	On-chip low spatially coherent laser with directional emission. , 2019, , .		O
20	Dynamical control of the emission of a square microlaser via symmetry classes. Physical Review A, $2018, 97, .$	2.5	5
21	Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities. Science, 2018, 361, 1225-1231.	12.6	77
22	Dielectric equilateral triangle microresonators: integral equations and semi-classical physics approaches. , $2018, , .$		5
23	Waves and rays in plano-concave laser cavities: II. A semiclassical approach. European Journal of Physics, 2017, 38, 034011.	0.6	5
24	Three-dimensional modes of three-dimensional microlasers. , 2017, , .		0
25	Resonant frequency analysis of dielectric equilateral triangular microcavities. , 2017, , .		0
26	Dynamical control of square microlaser emission via its symmetry classes. , 2017, , .		0
27	Spatio-temporal dynamics of broad-area semiconductor lasers. , 2016, , .		0
28	Random laser dynamics with temporally modulated pumping. , 2016, , .		1
29	Origin of emission from square-shaped organic microlasers. Europhysics Letters, 2016, 113, 54002.	2.0	15
30	Unidirectional light emission from low-index polymer microlasers. Applied Physics Letters, 2015, 106, .	3.3	25
31	Three-dimensional organic microlasers with low lasing thresholds fabricated by multiphoton and UV lithography. Optics Express, 2014, 22, 12316.	3.4	22
32	Localized lasing modes of triangular organic microlasers. Physical Review E, 2014, 90, 052922.	2.1	17
33	Dielectric square resonator investigated with microwave experiments. Physical Review E, 2014, 90, 052909.	2.1	7
34	Scattering experiments with microwave billiards at an exceptional point under broken time-reversal invariance. Physical Review E, 2014, 89, 032909.	2.1	22
35	Three-dimensional organic Fabry-Pérot microlasers. , 2014, , .		1
36	Bound states in sharply bent waveguides: Analytical and experimental approach. Physical Review E, 2013, 87, 042912.	2.1	20

#	Article	IF	CITATIONS
37	Three-dimensional emission from organic Fabry-Perot microlasers. Applied Physics Letters, 2013, 102, 251120.	3.3	8
38	Experimental observation of localized modes in a dielectric square resonator. Physical Review E, 2013, 88, 062906.	2.1	14
39	Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard. Physical Review B, 2012, 85, .	3.2	53
40	Trace formula for chaotic dielectric resonators tested with microwave experiments. Physical Review E, 2012, 85, 056203.	2.1	12
41	Application of a trace formula to the spectra of flat three-dimensional dielectric resonators. Physical Review E, 2012, 85, 026203.	2.1	12
42	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold-script">P<mml:mi mathvariant="bold-script">T</mml:mi </mml:mi </mml:math> Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard. Physical Review Letters, 2012, 108, 024101.	7.8	276
43	Semiclassical approaches for dielectric resonators. , 2012, , 1-39.		1
44	Double-slit experiments with microwave billiards. Physical Review E, 2011, 84, 016221.	2.1	6
45	Experimental test of a trace formula for two-dimensional dielectric resonators. Physical Review E, 2010, 81, 066215.	2.1	16
46	Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Physical Review B, 2010, 82, .	3.2	109
47	Experimental test of a two-dimensional approximation for dielectric microcavities. Physical Review A, 2009, 80, .	2.5	21