Stefan Bittner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold-script">P<mml:mi mathvariant="bold-script">T<mml:math>Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard. Physical Review Letters, 2012, 108, 024101.</mml:math></mml:mi </mml:mi </mml:math>	7.8	276
2	Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Physical Review B, 2010, 82, .	3.2	109
3	Complex lasers with controllable coherence. Nature Reviews Physics, 2019, 1, 156-168.	26.6	97
4	Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities. Science, 2018, 361, 1225-1231.	12.6	77
5	Massively parallel ultrafast random bit generation with a chip-scale laser. Science, 2021, 371, 948-952.	12.6	64
6	Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard. Physical Review B, 2012, 85, .	3.2	53
7	Unidirectional light emission from low-index polymer microlasers. Applied Physics Letters, 2015, 106, .	3.3	25
8	Three-dimensional organic microlasers with low lasing thresholds fabricated by multiphoton and UV lithography. Optics Express, 2014, 22, 12316.	3.4	22
9	Scattering experiments with microwave billiards at an exceptional point under broken time-reversal invariance. Physical Review E, 2014, 89, 032909.	2.1	22
10	Electrically pumped semiconductor laser with low spatial coherence and directional emission. Applied Physics Letters, 2019, 115, .	3.3	22
11	Experimental test of a two-dimensional approximation for dielectric microcavities. Physical Review A, 2009, 80, .	2.5	21
12	Bound states in sharply bent waveguides: Analytical and experimental approach. Physical Review E, 2013, 87, 042912.	2.1	20
13	Angular Memory Effect of Transmission Eigenchannels. Physical Review Letters, 2019, 123, 203901.	7.8	20
14	Localized lasing modes of triangular organic microlasers. Physical Review E, 2014, 90, 052922.	2.1	17
15	Experimental test of a trace formula for two-dimensional dielectric resonators. Physical Review E, 2010, 81, 066215.	2.1	16
16	Origin of emission from square-shaped organic microlasers. Europhysics Letters, 2016, 113, 54002.	2.0	15
17	Möbius Strip Microlasers: A Testbed for Non-Euclidean Photonics. Physical Review Letters, 2021, 127, 203901.	7.8	15
18	Experimental observation of localized modes in a dielectric square resonator. Physical Review E, 2013, 88, 062906.	2.1	14

STEFAN BITTNER

#	Article	IF	CITATIONS
19	Spatial structure of lasing modes in wave-chaotic semiconductor microcavities. New Journal of Physics, 2020, 22, 083002.	2.9	13
20	Trace formula for chaotic dielectric resonators tested with microwave experiments. Physical Review E, 2012, 85, 056203.	2.1	12
21	Application of a trace formula to the spectra of flat three-dimensional dielectric resonators. Physical Review E, 2012, 85, 026203.	2.1	12
22	Multimode lasing in wave-chaotic semiconductor microlasers. Physical Review A, 2019, 100, .	2.5	9
23	Three-dimensional emission from organic Fabry-Perot microlasers. Applied Physics Letters, 2013, 102, 251120.	3.3	8
24	Three-dimensional micro-billiard lasers: The square pyramid. Europhysics Letters, 2019, 126, 64004.	2.0	8
25	Sensitive control of broad-area semiconductor lasers by cavity shape. APL Photonics, 2022, 7, .	5.7	8
26	Dielectric square resonator investigated with microwave experiments. Physical Review E, 2014, 90, 052909.	2.1	7
27	Random-laser dynamics with temporally modulated pump. Physical Review A, 2019, 99, .	2.5	7
28	Double-slit experiments with microwave billiards. Physical Review E, 2011, 84, 016221.	2.1	6
29	Waves and rays in plano-concave laser cavities: II. A semiclassical approach. European Journal of Physics, 2017, 38, 034011.	0.6	5
30	Dynamical control of the emission of a square microlaser via symmetry classes. Physical Review A, 2018, 97, .	2.5	5
31	Dielectric equilateral triangle microresonators: integral equations and semi-classical physics approaches. , 2018, , .		5
32	Dielectric equilateral triangle microresonators: integral equations and semiclassical physics approaches. Optical Engineering, 2019, 58, 1.	1.0	4
33	Three-dimensional organic Fabry-Pérot microlasers. , 2014, , .		1
34	Random laser dynamics with temporally modulated pumping. , 2016, , .		1
35	Semiclassical approaches for dielectric resonators. , 2012, , 1-39.		1
36	Spatio-temporal dynamics of broad-area semiconductor lasers. , 2016, , .		0

#	Article	IF	CITATIONS
37	Three-dimensional modes of three-dimensional microlasers. , 2017, , .		0
38	Resonant frequency analysis of dielectric equilateral triangular microcavities. , 2017, , .		0
39	Dynamical control of square microlaser emission via its symmetry classes. , 2017, , .		0
40	Three-Dimensional Pyramid Microlasers. , 2019, , .		0
41	Möbius strip microlasers. , 2021, , .		0
42	Highly parallel ultra-fast random number generation from a stable-cavity broad-area semiconductor laser. , 2021, , .		0
43	On-chip low spatially coherent laser with directional emission. , 2019, , .		0
44	Spatio-temporal dynamics of highly multimode semiconductor lasers. , 2020, , .		0
45	Broad-area semiconductor laser for ultrafast parallel random number generation. , 2021, , .		0
46	Parallel Generation of Random Numbers Using a Broad-area Stable-cavity Semiconductor Laser. , 2021, ,		0
47	Ultrafast parallel random number generation with a chin-scale semiconductor laser 2021		0