Daniel Potts

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8929156/publications.pdf
Version: 2024-02-01

Learning multivariate functions with low-dimensional structures using polynomial bases. Journal of
Computational and Applied Mathematics, 2022, 403, 113821.

Interpretable Transformed ANOVA Approximation on the Example of the Prevention of Forest Fires. Frontiers in Applied Mathematics and Statistics, 2022, 8, .

Grouped Transformations and Regularization in High-Dimensional Explainable ANOVA Approximation.
SIAM Journal of Scientific Computing, 2022, 44, A1606-A1631.

High-dimensional sparse FFT based on sampling along multiple rank-1 lattices. Applied and Computational Harmonic Analysis, 2021, 51, 225-257.

Efficient multivariate inversion of the NFFT. Proceedings in Applied Mathematics and Mechanics, 2021,
20, e202000120.

6 Efficient multivariate approximation on the cube. Numerische Mathematik, 2021, 147, 393-429.

7 Continuous window functions for NFFT. Advances in Computational Mathematics, 2021, 47, 1.
0.8

Approximation of High-Dimensional Periodic Functions with Fourier-Based Methods. SIAM Journal on Numerical Analysis, 2021, 59, 2393-2429.

Uniform error estimates for nonequispaced fast Fourier transforms. Sampling Theory, Signal
Processing, and Data Analysis, 2021, 19, 1.

Interpretable Approximation of High-Dimensional Data. SIAM Journal on Mathematics of Data Science, 2021, 3, 1301-1323.

Fast cross-validation in harmonic approximation. Applied and Computational Harmonic Analysis, 2020,
49, 415-437.

A sparse FFT approach for ODE with random coefficients. Advances in Computational Mathematics, 2020, 46, 1.

Accelerating the calculation of dipolar interactions in particle based simulations with open
13 boundary conditions by means of the P2NFFT method. Journal of Computational Physics, 2019, 391, 243-258.

14 Direct inversion of the nonequispaced fast Fourier transform. Linear Algebra and Its Applications, 2019, 575, 106-140.

Fast Fourier Transforms for Nonequispaced Data. Applied and Numerical Harmonic Analysis, 2018, , 377-419.

Prony Method for Reconstruction of Structured Functions. Applied and Numerical Harmonic Analysis, 2018, , 523-573.

17 Discrete Fourier Transforms. Applied and Numerical Harmonic Analysis, 2018, , 107-157.
$0.1 \quad 1$
27 Multivariate sparse FFT based on rank-1 Chebyshev lattice sampling. , 2017, , .
Efficient Spectral Estimation by MUSIC and ESPRIT with Application to Sparse FFT. Frontiers in Applied Mathematics and Statistics, 2016, 2, .
$0.7 \quad 18$
Reconstruction of sparse Legendre and Gegenbauer expansions. BIT Numerical Mathematics, 2016, 56,

Sparse high-dimensional FFT based on rank-1 lattice sampling. Applied and Computational Harmonic

$$
\begin{aligned}
& 33 \text { Fast and exact reconstruction of arbitrary multivariate algebraic polynomials in Chebyshev form. , } \\
& 2015, \text {, }
\end{aligned}
$$

Fast Ewald summation based on NFFT with mixed periodicity. Journal of Computational Physics, 2015,

37 Fast ESPRIT algorithms based on partial singular value decompositions. Applied Numerical Mathematics, 2015, 88, 31-45.

38 Sparse polynomial interpolation in Chebyshev bases. Linear Algebra and Its Applications, 2014, 441, 61-87.
Computational Methods for the Fourier Analysis of Sparse High-Dimensional Functions. Lecture Notes
in Computational Science and Engineering, 2014, ,347-363.

40 Comparison of scalable fast methods for long-range interactions. Physical Review E, 2013, 88, 063308.
0.8

72

41	Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra and Its Applications, 2013, 439, 1024-1039.	0.4	90
42	Parallel Three-Dimensional Nonequispaced Fast Fourier Transforms and Their Application to Particle Simulation. SIAM Journal of Scientific Computing, 2013, 35, C411-C437.	1.3	27
43	Quadrature Errors, Discrepancies, and Their Relations to Halftoning on the Torus and the Sphere. SIAM Journal of Scientific Computing, 2012, 34, A2760-A2791.	1.3	21
44	Interpolation lattices for hyperbolic cross trigonometric polynomials. Journal of Complexity, 2012, 28, 76-92.	0.7	22

45 Quadrature Nodes Meet Stippling Dots. Lecture Notes in Computer Science, 2012, , 568-579.
47 Nonlinear Approximation by Sums of Exponentials and Translates. SIAM Journal of Scientific
Computing, 2011, 33, 1920-1947.
.3 36
A Continuous Approach to Discrete Ordering on \$mathbb $\{\mathrm{S}\}^{\wedge} 2 \$$. Multiscale Modeling and Simulation, 0.6 20
2011, 9, 314-334.
2011, 9, 314-334. 48On the computation of spherical designs by a new optimization approach based on fast spherical0.947Fourier transforms. Numerische Mathematik, 2011, 119, 699-724.Scattered Data Approximation on the Bisphere andÂApplication toÂTexture Analysis. Mathematical1.44
Geosciences, 2010, 42, 747-771.2.198
1631-1642.1.126
4415-4428.On the computation of nonnegative quadrature weights on the sphere. Applied and ComputationalHarmonic Analysis, 2009, 27, 124-132.1.133

A fast algorithm for nonequispaced Fourier transforms on the rotation group. Numerical
Algorithms, 2009, 52, 355-384.

Sampling Sets and Quadrature Formulae on the Rotation Group. Numerical Functional Analysis and Optimization, 2009, 30, 665-688.

Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms. ACM
Transactions on Mathematical Software, 2009, 36, 1-30.

Numerical stability of nonequispaced fast Fourier transforms. Journal of Computational and Applied
Mathematics, 2008, 222, 655-674.

The Radon transform on $\mathrm{SO}(3)$: a Fourier slice theorem and numerical inversion. Inverse Problems,
2008, 24, 025011.

Fast evaluation of quadrature formulae on the sphere. Mathematics of Computation, 2008, 77, 397-419.
1.1

Time and Memory Requirements of the Nonequispaced FFT. Sampling Theory in Signal and Information
Processing, 2008, 7, 77-100.

A Note on the Iterative MRI Reconstruction from Nonuniformk-Space Data. International Journal of
Biomedical Imaging, 2007, 2007, 1-9.

Field Inhomogeneity Correction Based on Gridding Reconstruction for Magnetic Resonance Imaging.
63 IEEE Transactions on Medical Imaging, 2007, 26, 374-384.

Stability Results for Scattered Data Interpolation by Trigonometric Polynomials. SIAM Journal of
Scientific Computing, 2007, 29, 1403-1419.

65 On the computation of the polar FFT. Applied and Computational Harmonic Analysis, 2007, 22, 257-263.
1.1

29

Orientation density function-controlled pole probability density function measurements: automated adaptive control of texture goniometers. Journal of Applied Crystallography, 2007, 40, 570-579.

Efficient reconstruction of functions on the sphere from scattered data. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1050405-1050406.

Efficient Reconstruction of Functions on the Sphere from Scattered Data. Journal of Fourier Analysis and Applications, 2007, 13, 435-458.

A probability argument in favor of ignoring small singular values. Operators and Matrices, 2007, ,
31-43.

Fast evaluation of trigonometric polynomials from hyperbolic crosses. Numerical Algorithms, 2006, 41, 339-352.

71 Fast Summation of Radial Functions on the Sphere. Computing (Vienna/New York), 2006, 78, 1-15.
3.2

80 Fast Poisson solvers on nonequispaced grids: multigrid and Fourier methods compared. , 2003, , .

Preconditioners for non-Hermitian Toeplitz systems. Numerical Linear Algebra With Applications, 2001,

Fast and stable algorithms for discrete spherical Fourier transforms. Linear Algebra and Its

94 Fast algorithms for discrete polynomial transforms. Mathematics of Computation, 1998, 67, 1577-1591.

