
Greta Sokoloff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8929032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do infant rats cry?. Psychological Review, 2001, 108, 83-95.	3.8	186
2	Behavioral Differences among C57BL/6 Substrains: Implications for Transgenic and Knockout Studies. Journal of Neurogenetics, 2008, 22, 315-331.	1.4	177
3	Genetic analysis in the Collaborative Cross breeding population. Genome Research, 2011, 21, 1223-1238.	5.5	158
4	Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. Journal of Clinical Investigation, 2012, 122, 2306-2315.	8.2	124
5	Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies. PLoS ONE, 2009, 4, e4729.	2.5	123
6	Rapid Whisker Movements in Sleeping Newborn Rats. Current Biology, 2012, 22, 2075-2080.	3.9	120
7	A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior. PLoS ONE, 2009, 4, e4649.	2.5	108
8	Thermoregulatory competence and behavioral expression in the young of altricial species?Revisited. , 1998, 33, 107-123.		104
9	Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations. Genetics, 2010, 185, 1033-1044.	2.9	99
10	Genome-Wide Association Study of d-Amphetamine Response in Healthy Volunteers Identifies Putative Associations, Including Cadherin 13 (CDH13). PLoS ONE, 2012, 7, e42646.	2.5	74
11	Hnrnph1 Is A Quantitative Trait Gene for Methamphetamine Sensitivity. PLoS Genetics, 2015, 11, e1005713.	3.5	57
12	Myoclonic Twitching and Sleep-Dependent Plasticity in the Developing Sensorimotor System. Current Sleep Medicine Reports, 2015, 1, 74-79.	1.4	56
13	Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex. Current Biology, 2020, 30, 2404-2410.e4.	3.9	56
14	Differences in Aggressive Behavior and DNA Copy Number Variants Between BALB/cJ and BALB/cByJ Substrains. Behavior Genetics, 2010, 40, 201-210.	2.1	53
15	Competition and cooperation among huddling infant rats. Developmental Psychobiology, 2001, 39, 65-75.	1.6	50
16	High-Resolution Genetic Mapping of Complex Traits from a Combined Analysis of F2 and Advanced Intercross Mice. Genetics, 2014, 198, 103-116.	2.9	46
17	Theta Oscillations during Active Sleep Synchronize the Developing Rubro-Hippocampal Sensorimotor Network. Current Biology, 2017, 27, 1413-1424.e4.	3.9	45
18	Genome-Wide Association for Fear Conditioning in an Advanced Intercross Mouse Line. Behavior Genetics, 2012, 42, 437-448.	2.1	44

GRETA SOKOLOFF

#	Article	IF	CITATIONS
19	A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Psychopharmacology, 2009, 203, 703-711.	3.1	42
20	Thermogenic, respiratory, and ultrasonic responses of week-old rats across the transition from moderate to extreme cold exposure. Developmental Psychobiology, 1997, 30, 181-194.	1.6	41
21	Neonatal maternal separation alters adult eyeblink conditioning and glucocorticoid receptor expression in the interpositus nucleus of the cerebellum. Developmental Neurobiology, 2007, 67, 1751-1764.	3.0	41
22	Sensorimotor Processing in the Newborn Rat Red Nucleus during Active Sleep. Journal of Neuroscience, 2015, 35, 8322-8332.	3.6	41
23	Genomeâ€wide association for methamphetamine sensitivity in an advanced intercross mouse line. Genes, Brain and Behavior, 2012, 11, 52-61.	2.2	38
24	REM sleep twitches rouse nascent cerebellar circuits: Implications for sensorimotor development. Developmental Neurobiology, 2015, 75, 1140-1153.	3.0	37
25	Twitch-related and rhythmic activation of the developing cerebellar cortex. Journal of Neurophysiology, 2015, 114, 1746-1756.	1.8	36
26	The developing brain revealed during sleep. Current Opinion in Physiology, 2020, 15, 14-22.	1.8	36
27	Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F ₂ and advanced intercross lines. Genes, Brain and Behavior, 2010, 9, 759-767.	2.2	34
28	A valuable and promising method for recording brain activity in behaving newborn rodents. Developmental Psychobiology, 2015, 57, 506-517.	1.6	34
29	Active Sleep Promotes Coherent Oscillatory Activity in the Cortico-Hippocampal System of Infant Rats. Cerebral Cortex, 2020, 30, 2070-2082.	2.9	33
30	Fine-mapping alleles for body weight in LG/J × SM/J F2 and F34 advanced intercross lines. Mammalian Genome, 2011, 22, 563-571.	2.2	31
31	Distress Vocalizations in Infant Rats: What's All the Fuss About?. Psychological Science, 2000, 11, 78-81.	3.3	30
32	Parallel and Serial Sensory Processing in Developing Primary Somatosensory and Motor Cortex. Journal of Neuroscience, 2021, 41, 3418-3431.	3.6	29
33	Cardiovascular concomitants in ultrasound production during cold exposure in infant rats Behavioral Neuroscience, 1999, 113, 1274-1282.	1.2	28
34	A developmental analysis of clonidine's effects on cardiac rate and ultrasound production in infant rats. Developmental Psychobiology, 2000, 36, 186-193.	1.6	26
35	Development of Twitching in Sleeping Infant Mice Depends on Sensory Experience. Current Biology, 2015, 25, 656-662.	3.9	26
36	Twitches emerge postnatally during quiet sleep in human infants and are synchronized with sleep spindles. Current Biology, 2021, 31, 3426-3432.e4.	3.9	25

GRETA SOKOLOFF

#	Article	IF	CITATIONS
37	Spatiotemporal organization of myoclonic twitching in sleeping human infants. Developmental Psychobiology, 2020, 62, 697-710.	1.6	24
38	Anxiety and fear in a cross of C57BL/6J and DBA/2J mice: mapping overlapping and independent QTL for related traits. Genes, Brain and Behavior, 2011, 10, 604-614.	2.2	23
39	Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis. Genes, Brain and Behavior, 2012, 11, 623-632.	2.2	23
40	Modulation of Tcf7l2 Expression Alters Behavior in Mice. PLoS ONE, 2011, 6, e26897.	2.5	21
41	Spontaneous activity and functional connectivity in the developing cerebellorubral system. Journal of Neurophysiology, 2016, 116, 1316-1327.	1.8	20
42	Movements during sleep reveal the developmental emergence of a cerebellar-dependent internal model in motor thalamus. Current Biology, 2021, 31, 5501-5511.e5.	3.9	20
43	Active sleep in cold-exposed infant Norway rats and Syrian golden hamsters: The role of brown adipose tissue thermogenesis Behavioral Neuroscience, 1998, 112, 695-706.	1.2	19
44	Contributions of endothermy to huddling behavior in infant Norway rats (Rattus norvegicus) and Syrian golden hamsters (Mesocricetus auratus) Journal of Comparative Psychology (Washington, D) Tj ETQq0 0	Oor.gBT /O	verøock 10 T
45	Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats. Alcohol, 2013, 47, 447-457.	1.7	19
46	A comparative analysis of huddling in infant Norway rats and Syrian golden hamsters: Does endothermy modulate behavior?. Behavioral Neuroscience, 2000, 114, 585-593.	1.2	18
47	Wakefulness suppresses retinal wave-related neural activity in visual cortex. Journal of Neurophysiology, 2017, 118, 1190-1197.	1.8	16
48	Corollary discharge in precerebellar nuclei of sleeping infant rats. ELife, 2018, 7, .	6.0	16
49	Dynamics of Brown Fat Thermogenesis in Week-Old Rats: Evidence of Relative Stability during Moderate Cold Exposure. Physiological Zoology, 1997, 70, 324-330.	1.5	15
50	Sensory Coding of Limb Kinematics in Motor Cortex across a Key Developmental Transition. Journal of Neuroscience, 2021, 41, 6905-6918.	3.6	15
51	A large <scp>QTL</scp> for fear and anxiety mapped using an <scp>F₂</scp> cross can be dissected into multiple smaller <scp>QTLs</scp> . Genes, Brain and Behavior, 2013, 12, 714-722.	2.2	13
52	Ethanol-exposed neonatal rats are impaired as adults in classical eyeblink conditioning at multiple unconditioned stimulus intensities. Brain Research, 2007, 1150, 155-166.	2.2	12
53	Cardiovascular mediation of clonidine-induced ultrasound production in infant rats Behavioral Neuroscience, 2000, 114, 602-608.	1.2	11
54	Thermoregulatory behavior in infant Norway rats (Rattus norvegicus) and Syrian golden hamsters () Tj ETQq0 0 0	orgBT /Ove 0.5	erlock 10 Tf 11

(Washington, D C: 1983), 2002, 116, 228-239.

GRETA SOKOLOFF

#	Article	IF	CITATIONS
55	Pontine and basal forebrain transections disinhibit brown fat thermogenesis in neonatal rats. Brain Research, 1995, 699, 214-220.	2.2	10
56	Thermoregulatory and Cardiac Responses of Infant Spontaneously Hypertensive and Wistar-Kyoto Rats to Cold Exposure. Hypertension, 1999, 33, 1465-1469.	2.7	10
57	Further evidence that BAT thermogenesis modulates cardiac rate in infant rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1712-R1717.	1.8	9
58	Genome-Wide Association Study in Two Cohorts from a Multi-generational Mouse Advanced Intercross Line Highlights the Difficulty of Replication Due to Study-Specific Heterogeneity. G3: Genes, Genomes, Genetics, 2020, 10, 951-965.	1.8	9
59	Cardiovascular concomitants in ultrasound production during cold exposure in infant rats Behavioral Neuroscience, 1999, 113, 1274-1282.	1.2	8
60	A comparative analysis of huddling in infant Norway rats and Syrian golden hamsters: Does endothermy modulate behavior?. Behavioral Neuroscience, 2000, 114, 585-593.	1.2	8
61	Effects of antihypertensive drugs on ultrasound production and cardiovascular responses in 15-day-old rats. Behavioural Brain Research, 2002, 131, 37-46.	2.2	7
62	Hard heads and open minds: A reply to Panksepp (2003) Psychological Review, 2003, 110, 389-394.	3.8	7
63	Behavioral States Modulate Sensory Processing in Early Development. Current Sleep Medicine Reports, 2019, 5, 112-117.	1.4	5
64	Cardiovascular mediation of clonidine-induced ultrasound production in infant rats Behavioral Neuroscience, 2000, 114, 602-608.	1.2	4
65	Recording Extracellular Activity in the Developing Cerebellum of Behaving Rats. Neuromethods, 2018, , 225-247.	0.3	0

66 Ontogeny of sleep. , 2021, , .

0