Hyejung Won

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8928951/publications.pdf

Version: 2024-02-01

117453 197535 13,913 48 34 49 citations h-index g-index papers 67 67 67 18267 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2019, 51, 63-75.	9.4	1,594
2	Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 2019, 51, 431-444.	9.4	1,538
3	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	9.4	1,332
4	Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism. Cell, 2013, 155, 1008-1021.	13.5	948
5	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	13.5	935
6	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	6.0	805
7	Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 2016, 22, 345-361.	15.2	684
8	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	6.0	618
9	Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature, 2012, 486, 261-265.	13.7	604
10	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516
11	Chromosome conformation elucidates regulatory relationships in developing human brain. Nature, 2016, 538, 523-527.	13.7	507
12	Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nature Genetics, 2018, 50, 538-548.	9.4	406
13	The PsychENCODE project. Nature Neuroscience, 2015, 18, 1707-1712.	7.1	371
14	The Dynamic Landscape of Open Chromatin during Human Cortical Neurogenesis. Cell, 2018, 172, 289-304.e18.	13.5	281
15	De novo mutations in regulatory elements in neurodevelopmental disorders. Nature, 2018, 555, 611-616.	13.7	232
16	Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science, 2018, 362, .	6.0	220
17	A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nature Neuroscience, 2020, 23, 583-593.	7.1	194
18	The road to precision psychiatry: translating genetics into disease mechanisms. Nature Neuroscience, 2016, 19, 1397-1407.	7.1	189

#	Article	IF	CITATIONS
19	A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment. Nature Neuroscience, 2019, 22, 353-361.	7.1	173
20	Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 2018, 362, .	6.0	162
21	Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Frontiers in Molecular Neuroscience, 2013, 6, 19.	1.4	154
22	Enhanced NMDA Receptor-Mediated Synaptic Transmission, Enhanced Long-Term Potentiation, and Impaired Learning and Memory in Mice Lacking IRSp53. Journal of Neuroscience, 2009, 29, 1586-1595.	1.7	141
23	GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nature Medicine, 2011, 17, 566-572.	15.2	140
24	Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility. Nature Communications, 2019, 10, 2396.	5 . 8	98
25	Regulation of Synaptic Rac1 Activity, Long-Term Potentiation Maintenance, and Learning and Memory by BCR and ABR Rac GTPase-Activating Proteins. Journal of Neuroscience, 2010, 30, 14134-14144.	1.7	91
26	Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nature Communications, 2020, 11, 5562.	5 . 8	80
27	Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Molecular Neurodegeneration, 2018, 13, 41.	4.4	77
28	Widespread Allelic Heterogeneity in Complex Traits. American Journal of Human Genetics, 2017, 100, 789-802.	2.6	74
29	Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Medicine, 2014, 6, 75.	3.6	72
30	Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nature Communications, 2020, 11, 4873.	5.8	62
31	Social and non-social autism symptoms and trait domains are genetically dissociable. Communications Biology, 2019, 2, 328.	2.0	57
32	Early Correction of N-Methyl-D-Aspartate Receptor Function Improves Autistic-like Social Behaviors in Adult Shank2â^'/â^' Mice. Biological Psychiatry, 2019, 85, 534-543.	0.7	56
33	Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Translational Psychiatry, 2020, 10, 265.	2.4	56
34	Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nature Communications, 2021, 12, 3968.	5.8	48
35	Revealing the brain's molecular architecture. Science, 2018, 362, 1262-1263.	6.0	45
36	The three-dimensional landscape of the genome in human brain tissue unveils regulatory mechanisms leading to schizophrenia risk. Schizophrenia Research, 2020, 217, 17-25.	1.1	31

#	Article	IF	CITATIONS
37	FIREcaller: Detecting frequently interacting regions from Hi-C data. Computational and Structural Biotechnology Journal, 2021, 19, 355-362.	1.9	22
38	Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits. Molecular Psychiatry, 2022, 27, 3085-3094.	4.1	13
39	Integration of evidence across human and model organism studies: A meeting report. Genes, Brain and Behavior, 2021, 20, e12738.	1.1	12
40	Convergence and Divergence of Rare Genetic Disorders on Brain Phenotypes. JAMA Psychiatry, 2022, 79, 818.	6.0	12
41	Schizophrenia-Linked Protein tSNARE1 Regulates Endosomal Trafficking in Cortical Neurons. Journal of Neuroscience, 2021, 41, 9466-9481.	1.7	10
42	Advances in profiling chromatin architecture shed light on the regulatory dynamics underlying brain disorders. Seminars in Cell and Developmental Biology, 2021, 121, 153-153.	2.3	8
43	Selection on the regulation of sympathetic nervous activity in humans and chimpanzees. PLoS Genetics, 2018, 14, e1007311.	1.5	6
44	Regulatory landscape in brain development and disease. Current Opinion in Genetics and Development, 2020, 65, 53-60.	1.5	6
45	Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Molecular Psychiatry, 2022, 27, 4218-4233.	4.1	6
46	Limited Association between Schizophrenia Genetic Risk Factors and Transcriptomic Features. Genes, 2021, 12, 1062.	1.0	5
47	Mapping Alzheimer's Disease Variants to Their Target Genes Using Computational Analysis of Chromatin Configuration. Journal of Visualized Experiments, 2020, , .	0.2	4
48	Chromatin architecture provides a roadmap to improve our understanding of psychiatric disorders. Neuropsychopharmacology, 2021, 46, 234-235.	2.8	1