List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8928723/publications.pdf Version: 2024-02-01

		11608	10424
212	21,164	70	139
papers	citations	h-index	g-index
218	218	218	21923
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. European Heart Journal, 2022, 43, 518-533.	1.0	113
2	Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity. Journal of Investigative Dermatology, 2022, 142, 166-178.e8.	0.3	20
3	Increased Salt Intake Decreases Diet-Induced Thermogenesis in Healthy Volunteers: A Randomized Placebo-Controlled Study. Nutrients, 2022, 14, 253.	1.7	3
4	Effect of Sunitinib Treatment on Skin Sodium Accumulation in Patients With Renal Cancer: a Pilot Study. Hypertension, 2022, 79, HYPERTENSIONAHA12219079.	1.3	3
5	Quantifying technical confounders in microbiome studies. Cardiovascular Research, 2021, 117, 863-875.	1.8	40
6	Intrauterine Exposure to Diabetic Milieu Does Not Induce Diabetes and Obesity in Male Adulthood in a Novel Rat Model. Hypertension, 2021, 77, 202-215.	1.3	4
7	The longevity gene mIndy (l'm Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms. JCI Insight, 2021, 6, .	2.3	17
8	Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021, 12, 1970.	5.8	108
9	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	2.0	86
10	Kidney Injury Caused by Preeclamptic Pregnancy Recovers Postpartum in a Transgenic Rat Model. International Journal of Molecular Sciences, 2021, 22, 3762.	1.8	3
11	Enhanced Ca ²⁺ signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model (<i>Cacna1h</i> ^{<i>M1560V/+</i>}). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
12	Cardiac Phenotype and Tissue Sodium Content in Adolescents With Defects in the Melanocortin System. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2606-2616.	1.8	3
13	Sodium and its manifold impact on our immune system. Trends in Immunology, 2021, 42, 469-479.	2.9	46
14	Propionic Acid Rescues High-Fat Diet Enhanced Immunopathology in Autoimmunity via Effects on Th17 Responses. Frontiers in Immunology, 2021, 12, 701626.	2.2	26
15	Skin sodium is increased in male patients with multiple sclerosis and related animal models. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
16	The (pro)renin receptor (ATP6ap2) facilitates receptor-mediated endocytosis and lysosomal function in the renal proximal tubule. Pflugers Archiv European Journal of Physiology, 2021, 473, 1229-1246.	1.3	7
17	Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes. Circulation, 2021, 144, 144-158.	1.6	32
18	Diabetic pregnancy as a novel risk factor for cardiac dysfunction in the offspring—the heart as a target for fetal programming in rats. Diabetologia, 2021, 64, 2829-2842.	2.9	6

#	Article	IF	CITATIONS
19	Reduction of Tissue Na+ Accumulation After Renal Transplantation. Kidney International Reports, 2021, 6, 2338-2347.	0.4	11
20	Targeted diets for the gut microbiota and the potential cardiovascular effects. Cardiovascular Research, 2021, 117, e135-e137.	1.8	0
21	B-cell lymphoma/leukaemia 10 and angiotensin II-induced kidney injury. Cardiovascular Research, 2020, 116, 1059-1070.	1.8	12
22	Statins Reverse Postpartum Cardiovascular Dysfunction in a Rat Model of Preeclampsia. Hypertension, 2020, 75, 202-210.	1.3	27
23	Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. European Heart Journal, 2020, 41, 3549-3560.	1.0	67
24	The role of the gut microbiota and microbial metabolites in neuroinflammation. European Journal of Immunology, 2020, 50, 1863-1870.	1.6	32
25	High-sensitivity cardiac troponin I in women with a history of early-onset preeclampsia. Journal of Hypertension, 2020, 38, 1948-1954.	0.3	5
26	Effects of empagliflozin and target-organ damage in a novel rodent model of heart failure induced by combined hypertension and diabetes. Scientific Reports, 2020, 10, 14061.	1.6	8
27	Phosphodiesterase 3A and Arterial Hypertension. Circulation, 2020, 142, 133-149.	1.6	35
28	NCX1 represents an ionic Na+ sensing mechanism in macrophages. PLoS Biology, 2020, 18, e3000722.	2.6	22
29	Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell, 2020, 180, 1067-1080.e16.	13.5	367
30	Speckle Tracking Echocardiography: New Ways of Translational Approaches in Preeclampsia to Detect Cardiovascular Dysfunction. International Journal of Molecular Sciences, 2020, 21, 1162.	1.8	9
31	The (pro)renin receptor: what's in a name?. Nature Reviews Nephrology, 2020, 16, 304-304.	4.1	4
32	Blood pressure changes correlate with short-chain fatty acid production potential shifts under a synbiotic intervention. Cardiovascular Research, 2020, 116, 1252-1253.	1.8	10
33	RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models. Journal of Clinical Investigation, 2020, 130, 2928-2942.	3.9	25
34	Effect of a probiotic on blood pressure in grade 1 hypertension (HYPRO): protocol of a randomized controlled study. Trials, 2020, 21, 1032.	0.7	11
35	Sodium chloride triggers Th17 mediated autoimmunity. Journal of Neuroimmunology, 2019, 329, 9-13.	1.1	29
36	Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation. Nature Communications, 2019, 10, 5155.	5.8	34

#	Article	IF	CITATIONS
37	Atp6ap2 deletion causes extensive vacuolation that consumes the insulin content of pancreatic β cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19983-19988.	3.3	23
38	The role of sodium in modulating immune cell function. Nature Reviews Nephrology, 2019, 15, 546-558.	4.1	74
39	Aldosterone, Salt, and Potassium Intakes as Predictors of Pregnancy Outcome, Including Preeclampsia. Hypertension, 2019, 74, 391-398.	1.3	24
40	Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension, 2019, 73, 926-935.	1.3	10
41	Interplay of Na+ Balance and Immunobiology of Dendritic Cells. Frontiers in Immunology, 2019, 10, 599.	2.2	8
42	HIF1A and NFAT5 coordinate Na ⁺ -boosted antibacterial defense via enhanced autophagy and autolysosomal targeting. Autophagy, 2019, 15, 1899-1916.	4.3	39
43	Tissue Sodium Content and Arterial Hypertension in Obese Adolescents. Journal of Clinical Medicine, 2019, 8, 2036.	1.0	9
44	Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation, 2019, 139, 1407-1421.	1.6	452
45	Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney International, 2019, 95, 108-122.	2.6	40
46	Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nature Reviews Immunology, 2019, 19, 243-254.	10.6	100
47	Diabetes Mellitus in Pregnancy Leads to Growth Restriction and Epigenetic Modification of the <i>Srebf2</i> Gene in Rat Fetuses. Hypertension, 2018, 71, 911-920.	1.3	30
48	Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology, 2018, 154, 230-238.	2.0	185
49	Transient Receptor Potential Vanilloid 4 Channel Deficiency Aggravates Tubular Damage after Acute Renal Ischaemia Reperfusion. Scientific Reports, 2018, 8, 4878.	1.6	17
50	GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nature Communications, 2018, 9, 5224.	5.8	116
51	Metabolic, Mental and Immunological Effects of Normoxic and Hypoxic Training in Multiple Sclerosis Patients: A Pilot Study. Frontiers in Immunology, 2018, 9, 2819.	2.2	22
52	Continuous Blood Glucose Monitoring Reveals Enormous Circadian Variations in Pregnant Diabetic Rats. Frontiers in Endocrinology, 2018, 9, 271.	1.5	5
53	Nitric oxide–sensitive guanylyl cyclase stimulation improves experimental heart failure with preserved ejection fraction. JCI Insight, 2018, 3, .	2.3	27
54	SGK1 induces vascular smooth muscle cell calcification through NF-κB signaling. Journal of Clinical Investigation, 2018, 128, 3024-3040.	3.9	114

#	Article	IF	CITATIONS
55	Elementary immunology: Na+ as a regulator of immunity. Pediatric Nephrology, 2017, 32, 201-210.	0.9	55
56	High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. Journal of Clinical Investigation, 2017, 127, 1944-1959.	3.9	153
57	Salt Sensitivity of Angiogenesis Inhibition–Induced Blood Pressure Rise. Hypertension, 2017, 69, 919-926.	1.3	42
58	Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na-magnetic resonance imaging. Rheumatology, 2017, 56, 556-560.	0.9	37
59	Immunoproteasome subunit ß5i/LMP7-deficiency in atherosclerosis. Scientific Reports, 2017, 7, 13342.	1.6	17
60	Soluble (pro)renin receptor in preeclampsia and diabetic pregnancies. Journal of the American Society of Hypertension, 2017, 11, 644-652.	2.3	12
61	Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker. Circulation, 2017, 136, 1824-1839.	1.6	58
62	Salt-responsive gut commensal modulates TH17 axis and disease. Nature, 2017, 551, 585-589.	13.7	896
63	Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation. Journal of Neuroinflammation, 2017, 14, 184.	3.1	37
64	Antibodies to Signaling Molecules and Receptors in Alzheimer's Disease are Associated with Psychomotor Slowing, Depression, and Poor Visuospatial Function. Journal of Alzheimer's Disease, 2017, 59, 929-939.	1.2	15
65	Increased salt consumption induces body water conservation and decreases fluid intake. Journal of Clinical Investigation, 2017, 127, 1932-1943.	3.9	114
66	Predictive and Prognostic Value of sPRR in Patients with Primary Epithelial Ovarian Cancer. Analytical Cellular Pathology, 2016, 2016, 1-6.	0.7	9
67	Role of Cystathionine Gamma-Lyase in Immediate Renal Impairment and Inflammatory Response in Acute Ischemic Kidney Injury. Scientific Reports, 2016, 6, 27517.	1.6	20
68	CD74-Downregulation of Placental Macrophage-Trophoblastic Interactions in Preeclampsia. Circulation Research, 2016, 119, 55-68.	2.0	73
69	Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cellular and Molecular Life Sciences, 2016, 73, 4611-4622.	2.4	82
70	Natural Killer Cell Reduction and Uteroplacental Vasculopathy. Hypertension, 2016, 68, 964-973.	1.3	14
71	Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14109-14114.	3.3	65
72	Hypertensive retinopathy in a transgenic angiotensin-based model. Clinical Science, 2016, 130, 1075-1088.	1.8	13

#	Article	IF	CITATIONS
73	High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. Experimental Neurology, 2016, 279, 212-222.	2.0	56
74	Tubular Epithelial NF-κB Activity Regulates Ischemic AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 2658-2669.	3.0	138
75	Relaxin Treatment in an Ang-II-Based Transgenic Preeclamptic-Rat Model. PLoS ONE, 2016, 11, e0150743.	1.1	8
76	Skin sodium measured with ²³ Na MRI at 7.0 T. NMR in Biomedicine, 2015, 28, 54-62.	1.6	74
77	Magnetic resonance–determined sodium removal from tissue stores in hemodialysis patients. Kidney International, 2015, 87, 434-441.	2.6	182
78	Sodium chloride, SGK1, and Th17 activation. Pflugers Archiv European Journal of Physiology, 2015, 467, 543-550.	1.3	38
79	Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense. Cell Metabolism, 2015, 21, 493-501.	7.2	252
80	New role for the (pro)renin receptor in T-cell development. Blood, 2015, 126, 504-507.	0.6	20
81	Exacerbation of acute kidney injury by bone marrow stromal cells from rats with persistent renin–angiotensin system activation. Clinical Science, 2015, 128, 735-747.	1.8	7
82	Vitamin D Depletion Aggravates Hypertension and Targetâ€Organ Damage. Journal of the American Heart Association, 2015, 4, .	1.6	38
83	Regulatory T Cells Ameliorate Intrauterine Growth Retardation in a Transgenic Rat Model for Preeclampsia. Hypertension, 2015, 65, 1298-1306.	1.3	27
84	Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity, 2015, 43, 817-829.	6.6	637
85	High salt reduces the activation of IL-4– and IL-13–stimulated macrophages. Journal of Clinical Investigation, 2015, 125, 4223-4238.	3.9	229
86	Relaxin Does Not Improve Angiotensin II-Induced Target-Organ Damage. PLoS ONE, 2014, 9, e93743.	1.1	9
87	Increase of angiotensin II type 1 receptor auto-antibodies in Huntington's disease. Molecular Neurodegeneration, 2014, 9, 49.	4.4	22
88	Macrophages in homeostatic immune function. Frontiers in Physiology, 2014, 5, 146.	1.3	58
89	Gene expression profiling in PC12 cells infected with an oncolytic Newcastle disease virus strain. Virus Research, 2014, 185, 10-22.	1.1	6
90	Taking Another "Look―at Sodium. Canadian Journal of Cardiology, 2014, 30, 473-475.	0.8	20

#	Article	IF	CITATIONS
91	Role of "Western Diet―in Inflammatory Autoimmune Diseases. Current Allergy and Asthma Reports, 2014, 14, 404.	2.4	341
92	Novel ideas about salt, blood pressure, and pregnancy. Journal of Reproductive Immunology, 2014, 101-102, 135-139.	0.8	8
93	Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1080-1098.	2.2	13
94	Bcl10 Mediates Angiotensin Il–Induced Cardiac Damage and Electrical Remodeling. Hypertension, 2014, 64, 1032-1039.	1.3	21
95	Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. Journal of Lipid Research, 2014, 55, 1150-1164.	2.0	186
96	Angiotensin IV is Induced in Experimental Autoimmune Encephalomyelitis but Fails to Influence the Disease. Journal of NeuroImmune Pharmacology, 2014, 9, 533-543.	2.1	1
97	²³ Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients. Hypertension, 2013, 61, 635-640.	1.3	332
98	Long-Term Space Flight Simulation Reveals Infradian Rhythmicity in Human Na+ Balance. Cell Metabolism, 2013, 17, 125-131.	7.2	294
99	Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neuroscience, 2013, 16, 273-280.	7.1	1,121
100	Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature, 2013, 496, 518-522.	13.7	1,136
101	Novel signalling mechanisms and targets in renal ischaemia and reperfusion injury. Acta Physiologica, 2013, 208, 25-40.	1.8	54
102	The direct renin inhibitor aliskiren improves vascular remodelling in transgenic rats harbouring human renin and angiotensinogen genes. Clinical Science, 2013, 125, 183-189.	1.8	12
103	The direct renin inhibitor aliskiren localizes and persists in rat kidneys. American Journal of Physiology - Renal Physiology, 2013, 305, F1593-F1602.	1.3	6
104	Amyloid-β Peptides Activate α ₁ -Adrenergic Cardiovascular Receptors. Hypertension, 2013, 62, 966-972.	1.3	26
105	Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. Journal of Clinical Investigation, 2013, 123, 2803-2815.	3.9	338
106	Neutrophil gelatinaseâ€associated lipocalin: pathophysiology and clinical applications. Acta Physiologica, 2013, 207, 663-672.	1.8	206
107	Autophagy and the (Pro)renin Receptor. Frontiers in Endocrinology, 2013, 4, 155.	1.5	25
108	CYP2J2 Overexpression Protects against Arrhythmia Susceptibility in Cardiac Hypertrophy. PLoS ONE, 2013, 8, e73490.	1.1	53

7

#	Article	IF	CITATIONS
109	Cytochrome P450 Subfamily 2J Polypeptide 2 Expression and Circulating Epoxyeicosatrienoic Metabolites in Preeclampsia. Circulation, 2012, 126, 2990-2999.	1.6	57
110	Caloric Restriction Ameliorates Angiotensin II–Induced Mitochondrial Remodeling and Cardiac Hypertrophy. Hypertension, 2012, 59, 76-84.	1.3	55
111	Interferon-γ Signaling Inhibition Ameliorates Angiotensin Il–Induced Cardiac Damage. Hypertension, 2012, 60, 1430-1436.	1.3	149
112	Inhibition of the renin–angiotensin–aldosterone system. Journal of Hypertension, 2012, 30, 647-654.	0.3	15
113	Prorenin receptor regulates more than the renin-angiotensin system. Annals of Medicine, 2012, 44, S43-S48.	1.5	12
114	²³ Na Magnetic Resonance Imaging of Tissue Sodium. Hypertension, 2012, 59, 167-172.	1.3	223
115	Immune mechanisms in angiotensin II-induced target-organ damage. Annals of Medicine, 2012, 44, S49-S54.	1.5	57
116	Effect of cytochrome P450-dependent epoxyeicosanoids on Ristocetin-induced thrombocyte aggregation. Clinical Hemorheology and Microcirculation, 2012, 52, 403-416.	0.9	23
117	Inhibition of 20-HETE synthesis and action protects the kidney from ischemia/reperfusion injury. Kidney International, 2011, 79, 57-65.	2.6	66
118	Peroxisome Proliferator-Activated Receptor-Gamma Agonists Suppress Tissue Factor Overexpression in Rat Balloon Injury Model with Paclitaxel Infusion. PLoS ONE, 2011, 6, e28327.	1.1	2
119	Immune-related effects in hypertension and target-organ damage. Current Opinion in Nephrology and Hypertension, 2011, 20, 113-117.	1.0	51
120	17(<i>R</i>),18(<i>S</i>)-Epoxyeicosatetraenoic Acid, a Potent Eicosapentaenoic Acid (EPA) Derived Regulator of Cardiomyocyte Contraction: Structure–Activity Relationships and Stable Analogues. Journal of Medicinal Chemistry, 2011, 54, 4109-4118.	2.9	57
121	Spinophilin regulates central angiotensin II-mediated effect on blood pressure. Journal of Molecular Medicine, 2011, 89, 1219-1229.	1.7	9
122	Angiotensin II Type 1 Receptor Antibodies and Increased Angiotensin II Sensitivity in Pregnant Rats. Hypertension, 2011, 58, 77-84.	1.3	121
123	Heparin Strongly Induces Soluble Fms-Like Tyrosine Kinase 1 Release In Vivo and In Vitro—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2972-2974.	1.1	49
124	Renin- and Prorenin-Induced Effects in Rat Vascular Smooth Muscle Cells Overexpressing the Human (Pro)Renin Receptor. Hypertension, 2011, 58, 1111-1119.	1.3	59
125	Vitamin D review. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 125-128.	1.0	28
126	Adipose Tissue-Derived Soluble Fms-Like Tyrosine Kinase 1 Is an Obesity-Relevant Endogenous Paracrine Adipokine. Hypertension, 2011, 58, 37-42.	1.3	22

#	Article	IF	CITATIONS
127	Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Annals of the Rheumatic Diseases, 2011, 70, 530-536.	0.5	254
128	Prorenin Receptor Is Essential for Podocyte Autophagy and Survival. Journal of the American Society of Nephrology: JASN, 2011, 22, 2193-2202.	3.0	179
129	Effects of Aliskiren on Stroke in Rats Expressing Human Renin and Angiotensinogen Genes. PLoS ONE, 2010, 5, e15052.	1.1	28
130	α1A-Adrenergic Receptor-Directed Autoimmunity Induces Left Ventricular Damage and Diastolic Dysfunction in Rats. PLoS ONE, 2010, 5, e9409.	1.1	15
131	The pro renin receptor and the mystic HRP -Is there a role in cardiovascular disease. Frontiers in Bioscience - Elite, 2010, E2, 1250-1253.	0.9	5
132	Inhibition of Trophoblast-Induced Spiral Artery Remodeling Reduces Placental Perfusion in Rat Pregnancy. Hypertension, 2010, 56, 304-310.	1.3	64
133	Response to Blood Pressure Control: A Facelift for Macrophages?. Hypertension, 2010, 56, .	1.3	0
134	Milk Products Containing Bioactive Tripeptides Have an Antihypertensive Effect in Double Transgenic Rats (dTGR) Harbouring Human Renin and Human Angiotensinogen Genes. Journal of Nutrition and Metabolism, 2010, 2010, 1-6.	0.7	27
135	Metabolomics in Angiotensin II-Induced Cardiac Hypertrophy. Hypertension, 2010, 55, 508-515.	1.3	40
136	Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy. Hypertension, 2010, 56, 311-318.	1.3	64
137	Mononuclear Phagocyte System Depletion Blocks Interstitial Tonicity-Responsive Enhancer Binding Protein/Vascular Endothelial Growth Factor C Expression and Induces Salt-Sensitive Hypertension in Rats. Hypertension, 2010, 55, 755-761.	1.3	174
138	Levosimendan improves cardiac function and survival in rats with angiotensin II-induced hypertensive heart failure. Hypertension Research, 2010, 33, 1004-1011.	1.5	2
139	The Biology of the (Pro)Renin Receptor. Journal of the American Society of Nephrology: JASN, 2010, 21, 18-23.	3.0	197
140	Arachidonic Acid-metabolizing Cytochrome P450 Enzymes Are Targets of ω-3 Fatty Acids*. Journal of Biological Chemistry, 2010, 285, 32720-32733.	1.6	316
141	Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes. Blood Pressure, 2010, 19, 196-205.	0.7	84
142	Prevalence of Agonistic Autoantibodies Against the Angiotensin II Type 1 Receptor and Soluble fms-Like Tyrosine Kinase 1 in a Gestational Age–Matched Case Study. Hypertension, 2009, 53, 393-398.	1.3	87
143	Growth Arrest Specific Protein 6 Participates in DOCA-Induced Target-Organ Damage. Hypertension, 2009, 54, 359-364.	1.3	14
144	Immunology in Hypertension, Preeclampsia, and Target-Organ Damage. Hypertension, 2009, 54, 439-443.	1.3	52

#	Article	IF	CITATIONS
145	Energy Metabolism in Human Renin-Gene Transgenic Rats. Hypertension, 2009, 53, 516-523.	1.3	31
146	Role of the Immune System in Hypertensive Target Organ Damage. Trends in Cardiovascular Medicine, 2009, 19, 242-246.	2.3	27
147	Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nature Medicine, 2009, 15, 545-552.	15.2	835
148	Endogenous angiotensinergic system in neurons of rat and human trigeminal ganglia. Regulatory Peptides, 2009, 154, 23-31.	1.9	36
149	Regulatory T Cells Ameliorate Angiotensin II–Induced Cardiac Damage. Circulation, 2009, 119, 2904-2912.	1.6	285
150	Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14942-14947.	3.3	170
151	Rosuvastatin protects against angiotensin II-induced renal injury in a dose-dependent fashion. Journal of Hypertension, 2009, 27, 599-605.	0.3	18
152	Aliskiren—mode of action and preclinical data. Journal of Molecular Medicine, 2008, 86, 659-662.	1.7	29
153	AT1-receptor autoantibodies and uteroplacental RAS in pregnancy and pre-eclampsia. Journal of Molecular Medicine, 2008, 86, 697-703.	1.7	66
154	Renin receptor blockade: A better strategy for renal protection than renin-angiotensin system inhibition?. Current Hypertension Reports, 2008, 10, 405-409.	1.5	6
155	Agonistic antibodies directed at cell surface receptors and cardiovascular disease. Journal of the American Society of Hypertension, 2008, 2, 8-14.	2.3	4
156	Novel Role for Inhibitor of Differentiation 2 in the Genesis of Angiotensin II–Induced Hypertension. Circulation, 2008, 117, 2645-2656.	1.6	29
157	Dietary n-3 Polyunsaturated Fatty Acids and Direct Renin Inhibition Improve Electrical Remodeling in a Model of High Human Renin Hypertension. Hypertension, 2008, 51, 540-546.	1.3	83
158	Battle against the renin-angiotensin system: help from an unexpected party. Nephrology Dialysis Transplantation, 2008, 24, 1110-1112.	0.4	2
159	Trophoblasts Reduce the Vascular Smooth Muscle Cell Proatherogenic Response. Hypertension, 2008, 51, 554-559.	1.3	29
160	Uterine Vascular Function in a Transgenic Preeclampsia Rat Model. Hypertension, 2008, 51, 547-553.	1.3	74
161	Aliskiren-Binding Increases the Half Life of Renin and Prorenin in Rat Aortic Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1151-1157.	1.1	88
162	Prorenin and Renin-Induced Extracellular Signal-Regulated Kinase 1/2 Activation in Monocytes Is Not Blocked by Aliskiren or the Handle-Region Peptide. Hypertension, 2008, 51, 682-688.	1.3	212

#	Article	IF	CITATIONS
163	Glucocorticoid-Related Signaling Effects in Vascular Smooth Muscle Cells. Hypertension, 2008, 51, 1372-1378.	1.3	51
164	The Putative (Pro)renin Receptor Blocker HRP Fails to Prevent (Pro)renin Signaling. Journal of the American Society of Nephrology: JASN, 2008, 19, 743-748.	3.0	133
165	(Pro)Renin Receptor Peptide Inhibitor "Handle-Region―Peptide Does Not Affect Hypertensive Nephrosclerosis in Goldblatt Rats. Hypertension, 2008, 51, 676-681.	1.3	128
166	Effects of Aliskiren on Blood Pressure, Albuminuria, and (Pro)Renin Receptor Expression in Diabetic TG(mRen-2)27 Rats. Hypertension, 2008, 52, 130-136.	1.3	271
167	Potential Relevance of α1-Adrenergic Receptor Autoantibodies in Refractory Hypertension. PLoS ONE, 2008, 3, e3742.	1.1	79
168	Dysregulation of the Circulating and Tissue-Based Renin-Angiotensin System in Preeclampsia. Hypertension, 2007, 49, 604-611.	1.3	235
169	Angiotensin II-induced sudden arrhythmic death and electrical remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1242-H1253.	1.5	64
170	p38 Mitogen-Activated Protein Kinase Inhibition Ameliorates Angiotensin II–Induced Target Organ Damage. Hypertension, 2007, 49, 481-489.	1.3	52
171	Low-dose renin inhibitor and low-dose AT1-receptor blocker therapy ameliorate target-organ damage in rats harbouring human renin and angiotensinogen genes. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2007, 8, 81-84.	1.0	24
172	Vascular Endothelial Cell–Specific NF-κB Suppression Attenuates Hypertension-Induced Renal Damage. Circulation Research, 2007, 101, 268-276.	2.0	128
173	Mechanisms of hypertension-induced target organ damage. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2007, 8, 148-150.	1.0	1
174	Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochemical Journal, 2007, 403, 109-118.	1.7	142
175	Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. Journal of Hypertension, 2007, 25, 2441-2453.	0.3	189
176	Aldosterone, mineralocorticoid receptors, and vascular inflammation. Current Opinion in Internal Medicine, 2007, 6, 295-303.	1.5	18
177	Agonistic Antibodies Directed at the Angiotensin II, AT1 Receptor in Preeclampsia. Journal of the Society for Gynecologic Investigation, 2006, 13, 79-86.	1.9	68
178	Elevated Blood Pressure and Heart Rate in Human Renin Receptor Transgenic Rats. Hypertension, 2006, 47, 552-556.	1.3	196
179	Direct Renin Inhibition with Aliskiren in Hypertension and Target Organ Damage. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 221-228.	2.2	113
180	Aliskiren, a Human Renin Inhibitor, Ameliorates Cardiac and Renal Damage in Double-Transgenic Rats. Hypertension, 2005, 46, 569-576.	1.3	224

Dominik N. MÃ¹/4ller

#	Article	IF	CITATIONS
181	Magnesium supplementation prevents angiotensin II-induced myocardial damage and CTGF overexpression. Journal of Hypertension, 2005, 23, 375-380.	0.3	11
182	Inducible NOS inhibition, eicosapentaenoic acid supplementation, and angiotensin II–induced renal damage. Kidney International, 2005, 67, 248-258.	2.6	23
183	Activating auto-antibodies against the AT1 receptor in preeclampsia. Autoimmunity Reviews, 2005, 4, 61-65.	2.5	45
184	Cardiac gene expression profile in rats with terminal heart failure and cachexia. Physiological Genomics, 2005, 20, 256-267.	1.0	46
185	Angiotensin II Type 1–Receptor Activating Antibodies in Renal-Allograft Rejection. New England Journal of Medicine, 2005, 352, 558-569.	13.9	760
186	Complement Activation in Angiotensin II–Induced Organ Damage. Circulation Research, 2005, 97, 716-724.	2.0	118
187	Agonistic Autoantibodies to the AT1 Receptor in a Transgenic Rat Model of Preeclampsia. Hypertension, 2005, 45, 742-746.	1.3	137
188	Aldosterone Synthase Inhibitor Ameliorates Angiotensin II–Induced Organ Damage. Circulation, 2005, 111, 3087-3094.	1.6	166
189	Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochemical and Biophysical Research Communications, 2005, 329, 1275-1281.	1.0	82
190	Aldosterone Potentiates Angiotensin II–Induced Signaling in Vascular Smooth Muscle Cells. Circulation, 2004, 109, 2792-2800.	1.6	214
191	Nitric oxide synthase expression in AT2 receptor–deficient mice after DOCA-salt. Kidney International, 2004, 65, 2268-2278.	2.6	13
192	Growth arrest specific protein 6/Axl signaling in human inflammatory renal diseases. American Journal of Kidney Diseases, 2004, 43, 286-295.	2.1	59
193	AT1 receptor agonistic antibodies, hypertension, and preeclampsia. Seminars in Nephrology, 2004, 24, 571-579.	0.6	39
194	A Peroxisome Proliferator-Activated Receptor-α Activator Induces Renal CYP2C23 Activity and Protects from Angiotensin II-Induced Renal Injury. American Journal of Pathology, 2004, 164, 521-532.	1.9	98
195	Cardiac hypertrophy and fibrosis in chronic l-NAME-treated AT2 receptor-deficient mice. Journal of Hypertension, 2004, 22, 997-1005.	0.3	20
196	Lipoic acid supplementation prevents angiotensin Il–induced renal injury. Kidney International, 2003, 64, 501-508.	2.6	45
197	AT 1 Receptor Agonistic Antibodies From Preeclamptic Patients Stimulate NADPH Oxidase. Circulation, 2003, 107, 1632-1639.	1.6	305
198	Entacapone protects from angiotensin II-induced inflammation and renal injury. Journal of Hypertension, 2003, 21, 2353-2363.	0.3	19

#	Article	IF	CITATIONS
199	Lacidipine Inhibits Adhesion Molecule and Oxidase Expression Independent of Blood Pressure Reduction in Angiotensin-Induced Vascular Injury. Hypertension, 2002, 39, 685-689.	1.3	24
200	Endothelin-Converting Enzyme Inhibition Ameliorates Angiotensin II–Induced Cardiac Damage. Hypertension, 2002, 40, 840-846.	1.3	33
201	Postischemic Acute Renal Failure Is Reduced by Short-Term Statin Treatment in a Rat Model. Journal of the American Society of Nephrology: JASN, 2002, 13, 2288-2298.	3.0	135
202	A gene expression analysis in rat kidney following high and low salt intake. Journal of Hypertension, 2002, 20, 1115-1120.	0.3	11
203	P450-Dependent Arachidonic Acid Metabolism and Angiotensin II–Induced Renal Damage. Hypertension, 2002, 40, 273-279.	1.3	59
204	Immunosuppressive Treatment Protects Against Angiotensin II-Induced Renal Damage. American Journal of Pathology, 2002, 161, 1679-1693.	1.9	250
205	Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats. BMC Cardiovascular Disorders, 2002, 2, 3.	0.7	70
206	Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. Journal of Molecular Medicine, 2001, 79, 76-102.	1.7	230
207	Amelioration of Angiotensin Il–Induced Cardiac Injury by a 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitor. Circulation, 2001, 104, 576-581.	1.6	151
208	Aspirin inhibits NFâ€̂₽B and protects from angiotensin IIâ€induced organ damage. FASEB Journal, 2001, 15, 1822-1824.	0.2	93
209	Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure- and cholesterol-lowering effects. Kidney International, 2000, 58, 1420-1430.	2.6	157
210	NF-κB Inhibition Ameliorates Angiotensin II–Induced Inflammatory Damage in Rats. Hypertension, 2000, 35, 193-201.	1.3	374
211	Effect of Bosentan on NF-κB, Inflammation, and Tissue Factor in Angiotensin II–Induced End-Organ Damage. Hypertension, 2000, 36, 282-290.	1.3	141
212	Angiotensin II (AT1) Receptor Blockade Reduces Vascular Tissue Factor in Angiotensin II-Induced Cardiac Vasculopathy. American Journal of Pathology, 2000, 157, 111-122.	1.9	93