Zhi-Bin Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8928693/publications.pdf

Version: 2024-02-01

35	2,131	23	35
papers	citations	h-index	g-index
35	35	35	2526
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineering Hierarchical Architecture of Metalâ€Organic Frameworks for Highly Efficient Overall CO ₂ Photoreduction. Small, 2022, 18, e2200407.	10.0	29
2	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	81
3	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	15
4	Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity. Angewandte Chemie, 2022, 134, .	2.0	4
5	Partial Metalation of Porphyrin Moieties in Hydrogenâ€Bonded Organic Frameworks Provides Enhanced CO ₂ Photoreduction Activity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
6	Facile Preparation of Hydrogen-Bonded Organic Framework/Cu ₂ O Heterostructure Films via Electrophoretic Deposition for Efficient CO ₂ Photoreduction. ACS Applied Materials & amp; Interfaces, 2022, 14, 21050-21058.	8.0	16
7	Integrating active C ₃ N ₄ moieties in hydrogen-bonded organic frameworks for efficient photocatalysis. Journal of Materials Chemistry A, 2021, 9, 4687-4691.	10.3	45
8	Radiochromic Hydrogenâ€Bonded Organic Frameworks for Xâ€ray Detection. Chemistry - A European Journal, 2021, 27, 10957-10965.	3.3	18
9	Controllable sulphur vacancies confined in nanoporous ZnS nanoplates for visible-light photocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 8186-8189.	4.1	14
10	Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO ₂ Photoreduction via Rational Design of Coordination Spheres on Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 12515-12523.	13.7	289
11	Record Complexity in the Polycatenation of Three Porous Hydrogen-Bonded Organic Frameworks with Stepwise Adsorption Behaviors. Journal of the American Chemical Society, 2020, 142, 7218-7224.	13.7	132
12	Visible-light-driven photocatalytic H ₂ evolution over CdZnS nanocrystal solid solutions: interplay of twin structures, sulfur vacancies and sacrificial agents. Journal of Materials Chemistry A, 2020, 8, 3882-3891.	10.3	121
13	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie, 2020, 132, 4415-4420.	2.0	10
14	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 4385-4390.	13.8	56
15	An easy and low-cost method of embedding chiral molecules in metal–organic frameworks for enantioseparation. Chemical Communications, 2020, 56, 7459-7462.	4.1	25
16	Trace of molecular doping in metal–organic frameworks: drastic change in the electronic band structure with a preserved topology and porosity. Journal of Materials Chemistry A, 2020, 8, 12370-12377.	10.3	9
17	Creating Giant Secondary Building Layers via Alkali-Etching Exfoliation for Precise Synthesis of Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 7584-7589.	6.7	35
18	Creating Chemisorption Sites for Enhanced CO ₂ Photoreduction Activity through Alkylamine Modification of MIL-101-Cr. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27017-27023.	8.0	67

#	Article	IF	CITATIONS
19	Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity. Nanoscale, 2019, 11, 9085-9090.	5.6	85
20	A visualizable means for verifying the manner of charge transfer in WO ₃ -based type-II heterostructures. Nanoscale, 2019, 11, 7825-7832.	5.6	14
21	Ag-modified ultrathin Bi ₁₂ O ₁₇ Cl ₂ nanosheets: photo-assisted Ag exfoliation synthesis and enhanced photocatalytic performance. Journal of Materials Chemistry A, 2018, 6, 9200-9208.	10.3	53
22	Hydrogen Production from Pure Water via Piezoelectricâ€assisted Visibleâ€light Photocatalysis of CdS Nanorod Arrays. ChemCatChem, 2018, 10, 3397-3401.	3.7	86
23	Simultaneous Realization of Enhanced Photoactivity and Promoted Photostability by Multilayered MoS ₂ Coating on CdS Nanowire Structure via Compact Coating Methodology. ACS Applied Materials & Discrete Structure (1978) and Promoted Photostability by Multilayered (1978) and Promoted (1978	8.0	110
24	In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Applied Catalysis B: Environmental, 2017, 206, 510-519.	20.2	81
25	Near-infrared-activated NaYF ₄ :Yb ³⁺ , Er ³⁺ /Au/CdS for H ₂ production via photoreforming of bio-ethanol: plasmonic Au as light nanoantenna, energy relay, electron sink and co-catalyst. Journal of Materials Chemistry A, 2017, 5, 10311-10320.	10.3	65
26	Grain boundary engineering in organic–inorganic hybrid semiconductor ZnS(en) _{0.5} for visible-light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 1387-1393.	10.3	55
27	Enhanced selectivity of methane production for photocatalytic reduction by the piezoelectric effect. Chemical Communications, 2017, 53, 9765-9768.	4.1	32
28	Dual-defective strategy directing in situ assembly for effective interfacial contacts in MoS ₂ cocatalyst/ln ₂ S ₃ light harvester layered photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13980-13988.	10.3	55
29	Predictive model for optimizing the near-field electromagnetic energy transfer in plasmonic nanostructure-involved photocatalysts. Applied Catalysis B: Environmental, 2016, 186, 143-150.	20.2	20
30	Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H ₂ Evolution. ACS Applied Materials & Therfaces, 2015, 7, 13915-13924.	8.0	193
31	^{1 sup>Rational design of a charge shunt: modification upon crystal facet engineering of semiconductor photocatalysts. Chemical Communications, 2015, 51, 11186-11189.}	4.1	22
32	Synthesis of single-crystal-like TiO2 hierarchical spheres with exposed $\{101\}$ and $\{111\}$ facets via lysine-inspired method. Applied Surface Science, 2015, 353, 714-722.	6.1	14
33	A visualized probe method for localization of surface oxygen vacancy on TiO ₂ : Au in situ reduction. Nanoscale, 2015, 7, 17488-17495.	5.6	14
34	Construction of Teethlike Homojunction BiOCl (001) Nanosheets by Selective Etching and Its High Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18423-18428.	8.0	77
35	Constructing atomic layer g-C ₃ N ₄ â€"CdS nanoheterojunctions with efficiently enhanced visible light photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 21280-21288.	2.8	147