Zafar Bashir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8928554/publications.pdf

Version: 2024-02-01

7AEAD RACHID

#	Article	IF	CITATIONS
1	Impaired hippocampal NMDAR-LTP in a transgenic model of NSUN2-deficiency. Neurobiology of Disease, 2022, 163, 105597.	2.1	5
2	Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. ELife, 2021, 10, .	2.8	12
3	NMDARs in prefrontal cortex – Regulation of synaptic transmission and plasticity. Neuropharmacology, 2021, 192, 108614.	2.0	4
4	Sustained postsynaptic kainate receptor activation downregulates AMPA receptor surface expression and induces hippocampal LTD. IScience, 2021, 24, 103029.	1.9	6
5	Plasticity in Prefrontal Cortex Induced by Coordinated Synaptic Transmission Arising from Reuniens/Rhomboid Nuclei and Hippocampus. Cerebral Cortex Communications, 2021, 2, tgab029.	0.7	4
6	Muscarinic Receptor Modulation of the Cerebellar Interpositus Nucleus In Vitro. Neurochemical Research, 2019, 44, 627-635.	1.6	4
7	Using scalp EEG and intracranial EEG signals for predicting epileptic seizures: Review of available methodologies. Seizure: the Journal of the British Epilepsy Association, 2019, 71, 258-269.	0.9	48
8	Nicotinic Acetylcholine Receptors Control Encoding and Retrieval of Associative Recognition Memory through Plasticity in the Medial Prefrontal Cortex. Cell Reports, 2018, 22, 3409-3415.	2.9	24
9	Separate elements of episodic memory subserved by distinct hippocampal–prefrontal connections. Nature Neuroscience, 2017, 20, 242-250.	7.1	96
10	Acid-sensing ion channel 1a is required for mGlu receptor dependent long-term depression in the hippocampus. Pharmacological Research, 2017, 119, 12-19.	3.1	18
11	Group I mGluR Induced LTD of NMDAR-synaptic Transmission at the Schaffer Collateral but not Temperoammonic Input to CA1. Current Neuropharmacology, 2016, 14, 435-440.	1.4	8
12	The epitranscriptome in modulating spatiotemporal RNA translation in neuronal post-synaptic function. Frontiers in Cellular Neuroscience, 2015, 9, 420.	1.8	50
13	Regionally selective requirement for D1/D5dopaminergic neurotransmission in the medial prefrontal cortex in object-in-place associative recognition memory. Learning and Memory, 2015, 22, 69-73.	0.5	16
14	Presynaptic NR2A-Containing NMDARs Are Required for LTD between the Amygdala and the Perirhinal Cortex: A Potential Mechanism for the Emotional Modulation of Memory?. ENeuro, 2015, 2, ENEURO.0046-14.2015.	0.9	4
15	Mechanisms of Synaptic Plasticity and Recognition Memory in the Perirhinal Cortex. Progress in Molecular Biology and Translational Science, 2014, 122, 193-209.	0.9	28
16	mGlu1 Receptor-Induced LTD of NMDA Receptor Transmission Selectively at Schaffer Collateral-CA1 Synapses Mediates Metaplasticity. Journal of Neuroscience, 2014, 34, 12223-12229.	1.7	16
17	\hat{I}^2 -Adrenoceptors and synaptic plasticity in the perirhinal cortex. Neuroscience, 2014, 273, 163-173.	1.1	16
18	Constitutively active group I mGlu receptors and PKMzeta regulate synaptic transmission in developing perirhinal cortex. Neuropharmacology, 2013, 66, 143-150.	2.0	13

#	Article	IF	CITATIONS
19	<scp>GABA</scp> _A , <scp>NMDA</scp> and m <scp>G</scp> lu2 receptors tonically regulate inhibition and excitation in the thalamic reticular nucleus. European Journal of Neuroscience, 2013, 37, 850-859.	1.2	28
20	Nitric oxideâ€dependent longâ€term depression but not endocannabinoidâ€mediated longâ€term potentiation is crucial for visual recognition memory. Journal of Physiology, 2013, 591, 3963-3979.	1.3	25
21	MicroRNAâ€132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. European Journal of Neuroscience, 2012, 36, 2941-2948.	1.2	110
22	Recognition memory and synaptic plasticity in the perirhinal and prefrontal cortices. Hippocampus, 2012, 22, 2012-2031.	0.9	21
23	Synaptic plasticity from amygdala to perirhinal cortex: a possible mechanism for emotional enhancement of visual recognition memory?. European Journal of Neuroscience, 2012, 36, 2421-2427.	1.2	21
24	Induction of Activity-Dependent LTD Requires Muscarinic Receptor Activation in Medial Prefrontal Cortex. Journal of Neuroscience, 2011, 31, 18464-18478.	1.7	48
25	Interaction between Ephrins and mGlu5 Metabotropic Glutamate Receptors in the Induction of Long-Term Synaptic Depression in the Hippocampus. Journal of Neuroscience, 2010, 30, 2835-2843.	1.7	17
26	BRAGging about Mechanisms of Long-Term Depression. Neuron, 2010, 66, 627-630.	3.8	2
27	Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices: expanding the pathology of diencephalic amnesia. Brain, 2009, 132, 1847-1857.	3.7	66
28	L-Type Voltage-Dependent Calcium Channel Antagonists Impair Perirhinal Long-Term Recognition Memory and Plasticity Processes. Journal of Neuroscience, 2009, 29, 9534-9544.	1.7	55
29	Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Molecular and Cellular Neurosciences, 2009, 40, 267-279.	1.0	67
30	Coâ€activation of p38 mitogenâ€activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptorâ€dependent longâ€term depression. Journal of Physiology, 2008, 586, 2499-2510.	1.3	92
31	Metabotropic Glutamate Receptor-Dependent Synaptic Plasticity. , 2008, , 509-528.		1
32	Expression of Long-Term Depression Underlies Visual Recognition Memory. Neuron, 2008, 58, 186-194.	3.8	142
33	Learning-Specific Changes in Long-Term Depression in Adult Perirhinal Cortex. Journal of Neuroscience, 2008, 28, 7548-7554.	1.7	30
34	Long-term depression: multiple forms and implications for brain function. Trends in Neurosciences, 2007, 30, 176-184.	4.2	248
35	Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology, 2007, 52, 60-70.	2.0	246
36	Experience-dependent modification of mechanisms of long-term depression. Nature Neuroscience, 2006, 9, 170-172.	7.1	45

#	Article	IF	CITATIONS
37	Tyrosine Phosphatases Regulate AMPA Receptor Trafficking during Metabotropic Glutamate Receptor-Mediated Long-Term Depression. Journal of Neuroscience, 2006, 26, 2544-2554.	1.7	162
38	The Different Effects on Recognition Memory of Perirhinal Kainate and NMDA Glutamate Receptor Antagonism: Implications for Underlying Plasticity Mechanisms. Journal of Neuroscience, 2006, 26, 3561-3566.	1.7	101
39	cAMP Responsive Element-Binding Protein Phosphorylation Is Necessary for Perirhinal Long-Term Potentiation and Recognition Memory. Journal of Neuroscience, 2005, 25, 6296-6303.	1.7	83
40	Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression. Journal of Neuroscience, 2004, 24, 7821-7828.	1.7	606
41	Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. European Journal of Neuroscience, 2004, 20, 2214-2224.	1.2	70
42	Metabotropic glutamate receptor signalling in perirhinal cortical neurons. Molecular and Cellular Neurosciences, 2004, 25, 275-287.	1.0	24
43	Galanin regulates spatial memory but not visual recognition memory or synaptic plasticity in perirhinal cortex. Neuropharmacology, 2003, 44, 40-48.	2.0	22
44	On long-term depression induced by activation of G-protein coupled receptors. Neuroscience Research, 2003, 45, 363-367.	1.0	19
45	Cholinergic Neurotransmission Is Essential for Perirhinal Cortical Plasticity and Recognition Memory. Neuron, 2003, 38, 987-996.	3.8	206
46	Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors. Journal of Physiology, 2003, 548, 723-730.	1.3	47
47	Evidence concerning how neurons of the perirhinal cortex may effect familiarity discrimination. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1083-1095.	1.8	83
48	Tyrosine dephosphorylation underlies DHPG-induced LTD. Neuropharmacology, 2002, 43, 175-180.	2.0	49
49	Cooperation between mglu receptors: a depressing mechanism?. Trends in Neurosciences, 2002, 25, 405-411.	4.2	39
50	Differences in GABAergic transmission between two inputs into the perirhinal cortex. European Journal of Neuroscience, 2002, 16, 437-444.	1.2	15
51	Mechanisms and physiological role of enhancement of mGlu5 receptor function by group II mGlu receptor activation in rat perirhinal cortex. Journal of Physiology, 2002, 540, 895-906.	1.3	26
52	Long-term depression: a cascade of induction and expression mechanisms. Progress in Neurobiology, 2001, 65, 339-365.	2.8	224
53	Activation of muscarinic receptors induces protein synthesis-dependent long-lasting depression in the perirhinal cortex. European Journal of Neuroscience, 2001, 14, 145-152.	1.2	82
54	An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. Journal of Physiology, 2001, 532, 459-466.	1.3	147

#	Article	IF	CITATIONS
55	Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. European Journal of Neuroscience, 2000, 12, 360-366.	1.2	177
56	GABABreceptors mediate frequency-dependent depression of excitatory potentials in rat perirhinal cortex in vitro. European Journal of Neuroscience, 2000, 12, 803-809.	1.2	32
57	A new form of long-term depression in the perirhinal cortex. Nature Neuroscience, 2000, 3, 150-156.	7.1	129
58	Input- and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro. Neuroscience, 1999, 92, 459-472.	1.1	75
59	Synaptic depression induced by pharmacological activation of metabotropic glutamate receptors in the perirhinal cortex in vitro. Neuroscience, 1999, 93, 977-984.	1.1	31
60	Induction of LTD in the adult hippocampus by the synaptic activation of AMPA/kainate and metabotropic glutamate receptors. Neuropharmacology, 1999, 38, 495-504.	2.0	131
61	Endogenous Adenosine Attenuates Long-term Depression and Depotentiation in the CA1 Region of the Rat Hippocampus. Neuropharmacology, 1997, 36, 161-167.	2.0	73
62	NMDA Receptor-dependent and -independent Long-term Depression in the CA1 Region of the Adult Rat Hippocampus In Vitro. Neuropharmacology, 1997, 36, 397-399.	2.0	55
63	A role for adenosine in the regulation of long-term depression in the adult rat hippocampus in vitro. Neuroscience Letters, 1997, 225, 189-192.	1.0	29
64	Effects of memantine and MKâ€801 on NMDAâ€induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. British Journal of Pharmacology, 1996, 117, 689-697.	2.7	119
65	Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. Journal of Neuroscience Methods, 1995, 59, 19-24.	1.3	61
66	NMDA receptors and long-term potentiation in the hippocampus. , 1995, , 294-312.		6
67	An investigation of depotentiation of longterm potentiation in the CA1 region of the hippocampus. Experimental Brain Research, 1994, 100, 437-443.	0.7	186
68	A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature, 1994, 368, 740-743.	13.7	477
69	Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 1994, 372, 237-243.	13.7	755
70	Phases in the development of a penicillin epileptiform focus in rat neocortex. Experimental Brain Research, 1993, 96, 319-27.	0.7	5
71	Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature, 1993, 363, 347-350.	13.7	716
72	Metabotropic glutamate receptors contribute to the induction of long-term depression in the CA1 region of the hippocampus. European Journal of Pharmacology, 1993, 239, 265-266.	1.7	112

#	Article	IF	CITATIONS
73	Synaptic plasticity: long-term potentiation in the hippocampus. Current Opinion in Neurobiology, 1992, 2, 328-335.	2.0	30
74	NMDA Receptor-dependent Transient Homo- and Heterosynaptic Depression in Picrotoxin-treated Hippocampal Slices. European Journal of Neuroscience, 1992, 4, 485-490.	1.2	31
75	Involvement of excitatory amino acid receptors in long-term potentiation in the Schaffer collateral–commissural pathway of rat hippocampal slices. Canadian Journal of Physiology and Pharmacology, 1991, 69, 1084-1090.	0.7	23
76	Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature, 1991, 349, 156-158.	13.7	357
77	Activation of the glycine site in the NMDA receptor is necessary for the induction of LTP. Neuroscience Letters, 1990, 108, 261-266.	1.0	75