
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8928382/publications.pdf Version: 2024-02-01

Luis P Pizzia

#	Article	IF	CITATIONS
1	Tungstophosphoric acid/mesoporous silicas as suitable catalysts in quinoxaline synthesis. Molecular Catalysis, 2022, 517, 112046.	2.0	6
2	Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts, 2022, 12, 507.	3.5	11
3	TiO2 nanorods doped with g-C3N4 – Polyethylene composite coating for self-cleaning applications. Materials Chemistry and Physics, 2022, 288, 126356.	4.0	6
4	Facile photocatalytic immobilization strategy for P-25 TiO2 nanoparticles on low density polyethylene films and their UV-A photo-induced super hydrophilicity and photocatalytic activity. Catalysis Today, 2021, 372, 11-19.	4.4	8
5	A green and reusable catalytic system based on silicopolyoxotungstovanadates incorporated in a polymeric material for the selective oxidation of sulfides to sulfones. Microporous and Mesoporous Materials, 2021, 310, 110584.	4.4	7
6	Mesoporous activated carbon from sunflower shells modified with sulfonic acid groups as solid acid catalyst for itaconic acid esterification. Catalysis Today, 2021, 372, 51-58.	4.4	14
7	Synthesis and characterization of nanoparticulate silica with organized multimodal porous structure impregnated with 12-phosphotungstic acid for its use in heterogeneous catalysis. Molecular Catalysis, 2020, 481, 110210.	2.0	11
8	Keggin heteropolyacid as catalyst for olefin epoxidation: A multiphase approach. Sustainable Chemistry and Pharmacy, 2020, 15, 100201.	3.3	5
9	Self-cleaning and antimicrobial photo-induced properties under indoor lighting irradiation of chitosan films containing Melon/TiO2 composites. Applied Surface Science, 2020, 508, 144895.	6.1	13
10	Nanoestructuras de sÃlice, con diámetro y distribución de mesoporos variable, modificadas con ácido tungstofosfórico como catalizadores en la sÃntesis de quinoxalinas. Revista Colombiana De Quimica, 2020, 49, 37-43.	0.4	1
11	Heterogeneous acid catalysts prepared by immobilization of H3PW12O40 on silica through impregnation and inclusion, applied to the synthesis of 3H-1,5-benzodiazepines. Molecular Catalysis, 2020, 485, 110842.	2.0	17
12	Biomass Derivative Valorization Using Nano Core-Shell Magnetic Materials Based on Keggin-Heteropolyacids: Levulinic Acid Esterification Kinetic Study with N-Butanol. Journal of Nanomaterials, 2019, 2019, 1-14.	2.7	12
13	Unexpected Result in the Catalytic Solvent-free Multicomponent Synthesis of 2-Amino-3-cyano-4 <i>H</i> -chromene. Organic Preparations and Procedures International, 2019, 51, 443-455.	1.3	4
14	Degradation study of malachite green on chitosan films containing heterojunctions of melon/TiO2 absorbing visible-light in solid-gas interfaces. Applied Catalysis B: Environmental, 2019, 244, 773-785.	20.2	25
15	Chitosan films containing TiO2 nanoparticles modified with tungstophosphoric acid for the photobleaching of malachite green in solid-gas interfaces upon different wavelengths. Molecular Catalysis, 2018, 448, 1-9.	2.0	6
16	Composite H3PW12O40–TiO2 catalysts for toluene selective photo-oxidation. Applied Catalysis B: Environmental, 2018, 225, 100-109.	20.2	58
17	Synthesis and characterization of tungstophosphoric acid-modified mesoporous sponge-like TUD-1 materials. Journal of Sol-Gel Science and Technology, 2018, 87, 204-215.	2.4	5
18	Abatement of 2,4-D by H2O2 solar photolysis and solar photo-Fenton-like process with minute Fe(III) concentrations. Water Research, 2018, 144, 572-580.	11.3	39

#	Article	IF	CITATIONS
19	Novel catalyst based on mono- and di-vanadium substituted Keggin polyoxometalate incorporated in poly(acrylic acid-co-acrylamide) polymer for the oxidation of sulfides. Molecular Catalysis, 2018, 457, 8-16.	2.0	16
20	Synthesis and characterization of tungstophosphoric acid-modified mesoporous silica nanoparticles with tuneable diameter and pore size distribution. Journal of Sol-Gel Science and Technology, 2017, 83, 355-364.	2.4	10
21	Preparation of acetates catalyzed by boric acid and/or tungstophosphoric acid-modified zirconia obtained employing polyethylene glycols as pore-forming agents. Journal of Molecular Catalysis A, 2017, 426, 88-96.	4.8	5
22	Titania hollow spheres modified with tungstophosphoric acid with enhanced visible light absorption for the photodegradation of 4-chlorophenol. Photochemical and Photobiological Sciences, 2017, 16, 46-52.	2.9	3
23	Polystyrene/silica microspheres with core/shell structure as support of tungstophosphoric acid. Materials Chemistry and Physics, 2016, 171, 281-289.	4.0	10
24	Visible-light-absorbing Evonik P-25 nanoparticles modified with tungstophosphoric acid and their photocatalytic activity on different wavelengths. Materials Research Bulletin, 2016, 83, 360-368.	5.2	9
25	Valorization of biomass derivatives: Keggin heteropolyacids supported on titania as catalysts in the suitable synthesis of 2-phenoxyethyl-2-furoate. Journal of Molecular Catalysis A, 2016, 425, 266-274.	4.8	17
26	Dodecatungstocobaltate supported over ZSM-5 zeolite as novel solid catalyst in selective sulfide oxidation. Journal of Porous Materials, 2016, 23, 947-956.	2.6	7
27	Synthesis and characterization of a novel tungstosilicic acid immobilized on zeolites catalyst for the photodegradation of methyl orange. Applied Catalysis B: Environmental, 2016, 188, 23-30.	20.2	44
28	TiO2 modified with polyoxotungstates should induce visible-light absorption and high photocatalytic activity through the formation of surface complexes. Applied Catalysis B: Environmental, 2016, 189, 99-109.	20.2	51
29	An Efficient and Green Catalytic Method for Friedläder Quinoline Synthesis Using Tungstophosphoric Acid Included in a Polymeric Matrix. Current Catalysis, 2015, 4, 65-72.	0.5	6
30	Transition metal-modified polyoxometalates supported on carbon as catalyst in 2-(methylthio)-benzothiazole sulfoxidation. Journal of Chemical Sciences, 2015, 127, 123-132.	1.5	12
31	Carbon-supported metal-modified lacunary tungstosilicic polyoxometallates used as catalysts in the selective oxidation of sulfides. Journal of Molecular Catalysis A, 2015, 403, 27-36.	4.8	24
32	Biomass valorization derivatives: Clean esterification of 2-furoic acid using tungstophosphoric acid/zirconia composites as recyclable catalyst. Chemical Engineering Research and Design, 2015, 98, 176-186.	5.6	21
33	Synthesis and Characterization of Hollow Silica Spheres. , 2015, 8, 567-576.		13
34	In situ generated TiO 2 over zeolitic supports as reusable photocatalysts for the degradation of dichlorvos. Applied Catalysis B: Environmental, 2015, 162, 167-173.	20.2	54
35	Visible light absorption of TiO2 materials impregnated with tungstophosphoric acid ethanol–aqueous solution at different pH values. Evidence about the formation of a surface complex between Keggin anion and TiO2 surfaces. Materials Research Bulletin, 2014, 49, 618-624.	5.2	13
36	Visible-light-absorbing mesoporous TiO2 modified with tungstosilicic acid as photocatalyst in the photodegradation of 4-chlorophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 289, 22-30.	3.9	11

#	Article	IF	CITATIONS
37	Mesoporous titania/tungstophosphoric acid composites: suitable synthesis of flavones. Journal of Porous Materials, 2013, 20, 1433-1440.	2.6	9
38	Tungstophosphoric Acid Supported on Zirconia: A Recyclable Catalyst for the Green Synthesis on Quinoxaline Derivatives under Solvent-Free Conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1071-1079.	1.6	9
39	2,3,5-Trimethylphenol oxidation over Co-based solid catalysts. Applied Catalysis A: General, 2013, 452, 17-23.	4.3	12
40	Tungstophosphoric acid immobilized on ammonium Y and ZSM5 zeolites: Synthesis, characterization and catalytic evaluation. Applied Catalysis B: Environmental, 2013, 130-131, 187-196.	20.2	22
41	Green catalytic synthesis of 14-aryl-14 <i>H</i> -dibenzo[a,j]xanthenes using recyclable mesoporous zirconia modified with tungstophosphoric acid. Green Chemistry Letters and Reviews, 2012, 5, 433-437.	4.7	9
42	Tungstophosphoric acid/zirconia composites prepared by the sol–gel method: An efficient and recyclable green catalyst for the one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes. Applied Catalysis A: General, 2012, 443-444, 207-213.	4.3	32
43	Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles. Ultrasonics Sonochemistry, 2012, 19, 383-386.	8.2	45
44	Photocatalytic discoloration of aqueous malachite green solutions by UV-illuminated TiO2 nanoparticles under air and nitrogen atmospheres: effects of counter-ions and pH. Photochemical and Photobiological Sciences, 2011, 10, 29-34.	2.9	30
45	Influence of the thermal treatment on the physicochemical properties and photocatalytic degradation of 4-chlorophenol in aqueous solutions with tungstophosphoric acid-modified mesoporous titania. Applied Catalysis A: General, 2011, 405, 69-78.	4.3	14
46	Photocatalytic bleaching of aqueous malachite green solutions by UV-A and blue-light-illuminated TiO2 spherical nanoparticles modified with tungstophosphoric acid. Applied Catalysis B: Environmental, 2011, 110, 126-132.	20.2	24
47	2-Methoxynaphthalene acylation using aluminum or copper salts of tungstophosphoric and tungstosilicic acids as catalysts. Catalysis Today, 2011, 173, 32-37.	4.4	23
48	Trifluoromethanesulfonic acid immobilized on zirconium oxide obtained by the sol–gel method as catalyst in paraben synthesis. Applied Catalysis A: General, 2011, 400, 91-98.	4.3	21
49	Comparative study of the catalytic preparation of flavones using Keggin heteropolyacids under homogeneous, heterogeneous and solvent free conditions. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100, 165.	1.7	8
50	Properties of mesoporous tungstosilicic acid/titania composites prepared by sol–gel method. Applied Surface Science, 2010, 256, 3546-3553.	6.1	13
51	Synthesis and characterization of catalysts obtained by trifluoromethanesulfonic acid immobilization on zirconia. Studies in Surface Science and Catalysis, 2010, , 405-408.	1.5	2
52	Mesoporous titania directly modified with tungstophosphoric acid: Synthesis, characterization and catalytic evaluation. Applied Catalysis A: General, 2009, 358, 73-78.	4.3	25
53	Trifluoromethanesulfonic acid supported on carbon used as catalysts in the synthesis of flavones and chromones. Catalysis Communications, 2009, 10, 576-581.	3.3	19
54	Direct modification with tungstophosphoric acid of mesoporous titania synthesized by urea-templated sol–gel reactions. Journal of Colloid and Interface Science, 2008, 327, 403-411.	9.4	41

#	Article	IF	CITATIONS
55	Synthesis and characterization of aluminum or copper tungstophosphate and tungstosilicate immobilized in a polymeric blend. European Polymer Journal, 2008, 44, 801-807.	5.4	15
56	Hybrid materials based on aluminum tungstophosphate or tungstosilicate as catalysts in anisole acylation. Catalysis Today, 2008, 133-135, 181-186.	4.4	10
57	Polyvinyl alcohol–polyethylenglycol blends with tungstophosphoric acid addition: Synthesis and characterization. Materials Chemistry and Physics, 2008, 108, 331-336.	4.0	15
58	Supported trifluoromethanesulfonic acid as catalyst in the synthesis of flavone and chromone derivatives. Applied Catalysis A: General, 2007, 324, 62-68.	4.3	39
59	A contribution to the physicochemical characterization of nonstoichiometric salts of tungstosilicic acid. Microporous and Mesoporous Materials, 2007, 103, 40-47.	4.4	83
60	Preparation and characterization of transition metal-modified lacunary Keggin 11-tungstophosphates supported on carbon. Materials Letters, 2007, 61, 719-724.	2.6	19
61	Polymer-immobilized aluminium or copper tungstophosphates and tungstosilicates as new catalysts in anisole acylation. Studies in Surface Science and Catalysis, 2006, 162, 793-800.	1.5	1
62	Effect of the support on a new metanethole synthesis heterogeneously catalyzed by Keggin heteropolyacids. Applied Catalysis A: General, 2006, 301, 25-31.	4.3	18
63	Synthesis and characterization of trifluoromethanesulfonic acid supported on mesoporous titania. Materials Letters, 2006, 60, 3931-3935.	2.6	11
64	Tungstosilicate salts as catalysts in phenol tetrahydropyranylation and depyranylation. Applied Catalysis A: General, 2005, 295, 209-215.	4.3	29
65	Mesoporous titania: effect of thermal treatment on the texture and acidic properties. Materials Letters, 2005, 59, 994-997.	2.6	28
66	Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Applied Catalysis A: General, 2003, 255, 265-277.	4.3	80
67	SILICA-SUPPORTED HETEROPOLYACIDS READILY INDUCE CYCLODIMERIZATION OF STYRENES AND STILBENES. Synthetic Communications, 2002, 32, 3803-3812.	2.1	18
68	Dehydration of Alcohols Catalysed by Heteropolyacids Supported on Silica. Journal of Chemical Research, 2001, 2001, 508-510.	1.3	5
69	Tungstophosphoric and tungstosilicic acids on carbon as acidic catalysts. Applied Catalysis A: General, 2001, 208, 7-19.	4.3	104
70	Title is missing!. Catalysis Letters, 2001, 71, 193-201.	2.6	16
71	Tungstophosphoric and Molybdophosphoric Acids Supported on Zirconia as Esterification Catalysts. Catalysis Letters, 2001, 77, 233-239.	2.6	53
72	Tungstophosphoric acid immobilized in polyvinyl alcohol hydrogel beads as heterogeneous catalyst. Studies in Surface Science and Catalysis, 2000, 143, 731-738.	1.5	8

#	Article	IF	CITATIONS
73	NiMo(W)-based hydrotreatment catalysts supported on peach stones activated carbon. Applied Catalysis A: General, 1999, 184, 303-313.	4.3	20
74	Equilibrium adsorption of 11-tungstophosphate anion on different supports. Applied Surface Science, 1999, 151, 91-101.	6.1	24
75	Adsorption of Tungstophosphoric or Tungstosilicic Acids from Ethanol–Water Solutions on Carbon. Journal of Colloid and Interface Science, 1997, 190, 318-326.	9.4	27
76	Adsorption and Impregnation of Alumina with Molybdenum or Tungsten Solutions. Adsorption Science and Technology, 1996, 13, 165-176.	3.2	4
77	Removal of diclofenac and ibuprofen on mesoporous activated carbon from agro-industrial wastes prepared by optimized synthesis employing a central composite design. Biomass Conversion and Biorefinery, 0, , 1.	4.6	5