
John M C Plane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8927840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new material for combustion exhaust aftertreatment at low temperature. Chemical Engineering Journal, 2022, 427, 131814.	6.6	1
2	Bottom-up dust nucleation theory in oxygen-rich evolved stars. Astronomy and Astrophysics, 2022, 658, A167.	2.1	22
3	ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars. Astronomy and Astrophysics, 2022, 660, A94.	2.1	14
4	A Comparison of the Midlatitude Nickel and Sodium Layers in the Mesosphere: Observations and Modeling. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4
5	Differential Ablation of Organic Coatings From Micrometeoroids Simulated in the Laboratory. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	5
6	Ablation Rates of Organic Compounds in Cosmic Dust and Resulting Changes in Mechanical Properties During Atmospheric Entry. Earth and Space Science, 2022, 9, .	1.1	4
7	The reaction between HgBr and O ₃ : kinetic study and atmospheric implications. Physical Chemistry Chemical Physics, 2022, , .	1.3	8
8	Reaction of SO ₃ with HONO ₂ and Implications for Sulfur Partitioning in the Atmosphere. Journal of the American Chemical Society, 2022, 144, 9172-9177.	6.6	8
9	Theoretical study of the NO ₃ radical reaction with CH ₂ ClBr, CH ₂ ICl, CH ₂ Brl, CHCl ₂ Br, and CHClBr ₂ . Physical Chemistry Chemical Physics, 2022, 24, 14365-14374.	1.3	3
10	Insights into the Chemistry of Iodine New Particle Formation: The Role of Iodine Oxides and the Source of Iodic Acid. Journal of the American Chemical Society, 2022, 144, 9240-9253.	6.6	14
11	Experimental study of the removal of excited state phosphorus atoms by H2O and H2: implications for the formation of PO in stellar winds. Monthly Notices of the Royal Astronomical Society, 2022, 515, 99-109.	1.6	6
12	The Chemistry of Mercury in the Stratosphere. Geophysical Research Letters, 2022, 49, .	1.5	4
13	Lidar observations of the upper atmospheric nickel layer at Beijing (40â~N,116â~E). Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260, 107468.	1.1	8
14	Meteorâ€Ablated Aluminum in the Mesosphere‣ower Thermosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028792.	0.8	8
15	Interhemispheric transport of metallic ions within ionospheric sporadic <i>E</i> layers by the lower thermospheric meridional circulation. Atmospheric Chemistry and Physics, 2021, 21, 4219-4230.	1.9	24
16	Astrochemical Significance of the P + SO Reaction: Spectroscopic Characterization of SPO, PSO, and SOP Isomers. Astrophysical Journal, 2021, 909, 122.	1.6	2
17	The Phase of Water Ice Which Forms in Cold Clouds in the Mesospheres of Mars, Venus, and Earth. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006796.	1.5	7
18	The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth. Earth and Planetary Science Letters, 2021, 560, 116794.	1.8	38

#	Article	IF	CITATIONS
19	New Global Meteoric Smoke Observations From SOFIE: Insight Regarding Chemical Composition, Meteoric Influx, and Hemispheric Asymmetry. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035007.	1.2	5
20	Phosphorus Chemistry in the Earth's Upper Atmosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029881.	0.8	6
21	ATOMIUM: halide molecules around the S-type AGB star W Aquilae. Astronomy and Astrophysics, 2021, 655, A80.	2.1	13
22	Self-consistent global transport of metallic ions with WACCM-X. Atmospheric Chemistry and Physics, 2021, 21, 15619-15630.	1.9	11
23	Kinetic Study of the Reactions of AlO with H ₂ O and H ₂ ; Precursors to Stellar Dust Formation. ACS Earth and Space Chemistry, 2021, 5, 3385-3395.	1.2	9
24	Cosmic dust fluxes in the atmospheres of Earth, Mars, and Venus. Icarus, 2020, 335, 113395.	1.1	53
25	Water Photolysis and Its Contributions to the Hydroxyl Dayglow Emissions in the Atmospheres of Earth and Mars. Journal of Physical Chemistry Letters, 2020, 11, 9086-9092.	2.1	19
26	Kinetic Study of the Reactions of AlO and OAlO Relevant to Planetary Mesospheres. ACS Earth and Space Chemistry, 2020, 4, 2007-2017.	1.2	5
27	Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30949-30956.	3.3	50
28	First Simultaneous Lidar Observations of Thermosphereâ€lonosphere Fe and Na (TIFe and TINa) Layers at McMurdo (77.84°S, 166.67°E), Antarctica With Concurrent Measurements of Aurora Activity, Enhanced Ionization Layers, and Converging Electric Field. Geophysical Research Letters, 2020, 47, e2020GL090181.	1.5	19
29	Kinetic Study of the Reactions PO + O ₂ and PO ₂ + O ₃ and Spectroscopy of the PO Radical. Journal of Physical Chemistry A, 2020, 124, 7911-7926.	1.1	10
30	A gas-to-particle conversion mechanism helps to explain atmospheric particle formation through clustering of iodine oxides. Nature Communications, 2020, 11, 4521.	5.8	39
31	(Sub)stellar companions shape the winds of evolved stars. Science, 2020, 369, 1497-1500.	6.0	57
32	Injection of meteoric phosphorus into planetary atmospheres. Planetary and Space Science, 2020, 187, 104926.	0.9	17
33	The Meteoric Ni Layer in the Upper Atmosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028083.	0.8	8
34	Suprathermal Magnetospheric Atomic and Molecular Heavy Ions at and Near Earth, Jupiter, and Saturn: Observations and Identification. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027271.	0.8	7
35	A study of the reactions of Ni ⁺ and NiO ⁺ ions relevant to planetary upper atmospheres. Physical Chemistry Chemical Physics, 2020, 22, 8940-8951.	1.3	6
36	ATOMIUM: A high-resolution view on the highly asymmetric wind of the AGB star <i>Ï€</i> ¹ Gruis. Astronomy and Astrophysics, 2020, 644, A61.	2.1	17

#	Article	IF	CITATIONS
37	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 2020, 101, E1743-E1760.	1.7	21
38	Determination of the absorption cross sections of higher-order iodine oxides at 355Âand 532 nm. Atmospheric Chemistry and Physics, 2020, 20, 10865-10887.	1.9	14
39	Observations of the Nickel Layer in the Mesopause Region at Mid-Latitudes. EPJ Web of Conferences, 2020, 237, 04004.	0.1	0
40	Observations and Modeling of Potassium Emission in the Terrestrial Nightglow. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6612-6629.	1.2	9
41	Experimental Study of the Removal of Ground- and Excited-State Phosphorus Atoms by Atmospherically Relevant Species. Journal of Physical Chemistry A, 2019, 123, 9469-9478.	1.1	19
42	Ablation of Ni from micrometeoroids in the upper atmosphere: Experimental and computer simulations and implications for Fe ablation. Planetary and Space Science, 2019, 179, 104725.	0.9	12
43	A study of the reactions of Al ⁺ ions with O ₃ , N ₂ , O ₂ , CO ₂ and H ₂ O: influence on Al ⁺ chemistry in planetary ionospheres. Physical Chemistry Chemical Physics, 2019, 21, 14080-14089.	1.3	7
44	The 27â€Đay Solar Rotational Cycle Response in the Mesospheric Metal Layers at Low Latitudes. Geophysical Research Letters, 2019, 46, 7199-7206.	1.5	6
45	The impact of solar radiation on polar mesospheric ice particle formation. Atmospheric Chemistry and Physics, 2019, 19, 4311-4322.	1.9	3
46	Origin of the Extended Mars Radar Blackout of September 2017. Journal of Geophysical Research: Space Physics, 2019, 124, 4556-4568.	0.8	27
47	Localized Ionization Hypothesis for Transient Ionospheric Layers. Journal of Geophysical Research: Space Physics, 2019, 124, 4870-4880.	0.8	19
48	Modeling the Altitude Distribution of Meteor Head Echoes Observed with HPLA Radars: Implications for the Radar Detectability of Meteoroid Populations. Astronomical Journal, 2019, 157, 179.	1.9	8
49	Lidar Soundings of the Mesospheric Nickel Layer Using Ni(³ F) and Ni(³ D) Transitions. Geophysical Research Letters, 2019, 46, 408-415.	1.5	24
50	Photochemistry on the bottom side of the mesospheric Na layer. Atmospheric Chemistry and Physics, 2019, 19, 3769-3777.	1.9	8
51	From molecules to dust grains: The role of alumina cluster seeds. Proceedings of the International Astronomical Union, 2019, 15, 245-248.	0.0	Ο
52	Optical properties of meteoric smoke analogues. Atmospheric Chemistry and Physics, 2019, 19, 12767-12777.	1.9	3
53	Kinetic Study of Ni and NiO Reactions Pertinent to the Earth's Upper Atmosphere. Journal of Physical Chemistry A, 2019, 123, 601-610.	1.1	14
54	Low temperature studies of the rate coefficients and branching ratios of reactive loss vs quenching for the reactions of 1CH2 with C2H6, C2H4, C2H2. Icarus, 2019, 321, 752-766.	1.1	8

#	Article	IF	CITATIONS
55	Comment on "Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature―by W. Siebrand, Z. Smedarchina, E. MartÃnez-Núñez and A. Fernández-Ramos, <i>Phys. Chem. Chem. Phys</i> ., 2016, 18 , 22712. Physical Chemistry Chemical Physics, 2018, 20, 8349-8354.	1.3	10
56	Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces. Space Science Reviews, 2018, 214, 1.	3.7	43
57	Selective Disparity of Ordinary Chondritic Precursors in Micrometeorite Flux. Astrophysical Journal, 2018, 853, 38.	1.6	9
58	Low temperature studies of the removal reactions of 1CH2 with particular relevance to the atmosphere of Titan. Icarus, 2018, 303, 10-21.	1.1	12
59	Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material. Atmospheric Chemistry and Physics, 2018, 18, 4519-4531.	1.9	18
60	Characterization of the Extraterrestrial Magnesium Source in the Atmosphere Using a Meteoric Ablation Simulator. Geophysical Research Letters, 2018, 45, 7765-7771.	1.5	6
61	Meteoric Metal Chemistry in the Martian Atmosphere. Journal of Geophysical Research E: Planets, 2018, 123, 695-707.	1.5	28
62	Constraints on Metal Oxide and Metal Hydroxide Abundances in the Winds of AGB Stars: Potential Detection of FeO in R Dor. Astrophysical Journal, 2018, 855, 113.	1.6	20
63	A new model of meteoric calcium in the mesosphere and lower thermosphere. Atmospheric Chemistry and Physics, 2018, 18, 14799-14811.	1.9	19
64	Heterogeneous chemistry on nano dust in the terrestrial and planetary atmospheres (including Titan). Proceedings of the International Astronomical Union, 2018, 14, 388-388.	0.0	0
65	The role of alumina in triggering stellar outflows. Proceedings of the International Astronomical Union, 2018, 14, 406-407.	0.0	0
66	On the onset of dust formation in AGB stars. Proceedings of the International Astronomical Union, 2018, 14, 119-128.	0.0	0
67	Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. Nature Communications, 2018, 9, 4796.	5.8	107
68	The Impact of Comet Siding Spring's Meteors on the Martian Atmosphere and Ionosphere. Journal of Geophysical Research E: Planets, 2018, 123, 2613-2627.	1.5	14
69	Climatology of mesopause region nocturnal temperature, zonal wind and sodium density observed by sodium lidar over Hefei, China (32° N, 117A°â€‰E). Atmospheric Chemistry and Physics, 2018, 18, 11683-	11 6 95.	12
70	Largeâ€Amplitude Mountain Waves in the Mesosphere Accompanying Weak Crossâ€Mountain Flow During DEEPWAVE Research Flight RF22. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9992.	1.2	26
71	Observations and Modeling of Increased Nitric Oxide in the Antarctic Polar Middle Atmosphere Associated With Geomagnetic Stormâ€Driven Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 2018, 123, 6009-6025.	0.8	22
72	Momentum Flux Spectra of a Mountain Wave Event Over New Zealand. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9980-9991.	1.2	15

#	Article	IF	CITATIONS
73	Radical-mediated direct C–H amination of arenes with secondary amines. Chemical Science, 2018, 9, 6647-6652.	3.7	36
74	An Explanation for the Nitrous Oxide Layer Observed in the Mesopause Region. Geophysical Research Letters, 2018, 45, 7818-7827.	1.5	5
75	Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals. Astrophysical Journal, 2017, 836, 212.	1.6	31
76	The uptake of HO ₂ on meteoric smoke analogues. Journal of Geophysical Research D: Atmospheres, 2017, 122, 554-565.	1.2	10
77	Absorption cross sections and kinetics of formation of AlO at 298 K. Chemical Physics Letters, 2017, 675, 56-62.	1.2	11
78	Unique, nonâ€Earthlike, meteoritic ion behavior in upper atmosphere of Mars. Geophysical Research Letters, 2017, 44, 3066-3072.	1.5	30
79	Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator. Review of Scientific Instruments, 2017, 88, 034501.	0.6	12
80	Detection of a persistent meteoric metal layer in the Martian atmosphere. Nature Geoscience, 2017, 10, 401-404.	5.4	52
81	CO oxidation and O2 removal on meteoric material in Venus' atmosphere. Icarus, 2017, 296, 150-162.	1.1	7
82	CO2 ice structure and density under Martian atmospheric conditions. Icarus, 2017, 294, 201-208.	1.1	45
83	Impacts of a sudden stratospheric warming on the mesospheric metal layers. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162, 162-171.	0.6	16
84	The Reaction between Sodium Hydroxide and Atomic Hydrogen in Atmospheric and Flame Chemistry. Journal of Physical Chemistry A, 2017, 121, 7667-7674.	1.1	14
85	Impacts of meteoric sulfur in the Earth's atmosphere. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7678-7701.	1.2	10
86	Meteoric Smoke Deposition in the Polar Regions: A Comparison of Measurements With Global Atmospheric Models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,112.	1.2	16
87	Discovery of Suprathermal Ionospheric Origin Fe ⁺ in and Near Earth's Magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 11,175.	0.8	10
88	The fate of meteoric metals in ice particles: Effects of sublimation and energetic particle bombardment. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161, 143-149.	0.6	4
89	Reaction Kinetics of CaOH with H and O ₂ and O ₂ CaOH with O: Implications for the Atmospheric Chemistry of Meteoric Calcium. ACS Earth and Space Chemistry, 2017, 1, 431-441.	1.2	6
90	Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles. III. The Role of Sodium and the Head Echo Size on the Probability of Detection. Astrophysical Journal, 2017, 843, 1.	1.6	33

#	Article	IF	CITATIONS
91	Synthesis and characterisation of analogues for interplanetary dust and meteoric smoke particles. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162, 178-191.	0.6	7
92	Observations of Dramatic Enhancements to the Mesospheric K Layer. Geophysical Research Letters, 2017, 44, 12,536.	1.5	11
93	Measuring FeO variation using astronomical spectroscopic observations. Atmospheric Chemistry and Physics, 2017, 17, 4177-4187.	1.9	13
94	Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model. Atmospheric Chemistry and Physics, 2017, 17, 883-898.	1.9	49
95	Constraints on Meteoric Smoke Composition and Meteoric Influx Using SOFIE Observations With Models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,495.	1.2	15
96	Comparison of global datasets of sodium densities in the mesosphere and lower thermosphere from GOMOS, SCIAMACHY and OSIRIS measurements and WACCM model simulations from 2008 to 2012. Atmospheric Measurement Techniques, 2017, 10, 2989-3006.	1.2	12
97	<i>D</i> -region ion–neutral coupled chemistry (Sodankyläon Chemistry,) Tj ET WACCM-rSIC. Geoscientific Model Development, 2016, 9, 3123-3136.	Qq1 1 0.7 1.3	84314 rgB ⁻ 16
98	Decay times of transitionally dense specularly reflecting meteor trails and potential chemical impact on trail lifetimes. Annales Geophysicae, 2016, 34, 1119-1144.	0.6	11
99	Stratospheric aerosol-Observations, processes, and impact on climate. Reviews of Geophysics, 2016, 54, 278-335.	9.0	265
100	Sources of cosmic dust in the Earth's atmosphere. Geophysical Research Letters, 2016, 43, 11979-11986.	1.5	138
101	A study of the dissociative recombination of CaO + with electrons: Implications for Ca chemistry in the upper atmosphere. Geophysical Research Letters, 2016, 43, 12333-12339.	1.5	6
102	ABLATION AND CHEMICAL ALTERATION OF COSMIC DUST PARTICLES DURING ENTRY INTO THE EARTH'S ATMOSPHERE. Astrophysical Journal, Supplement Series, 2016, 227, 15.	3.0	11
103	Dust formation in the oxygen-rich AGB star IK Tauri. Astronomy and Astrophysics, 2016, 585, A6.	2.1	141
104	A novel instrument to measure differential ablation of meteorite samples and proxies: The Meteoric Ablation Simulator (MASI). Review of Scientific Instruments, 2016, 87, 094504.	0.6	22
105	Solar cycle response and longâ€ŧerm trends in the mesospheric metal layers. Journal of Geophysical Research: Space Physics, 2016, 121, 7153-7165.	0.8	15
106	Uptake of acetylene on cosmic dust and production of benzene in Titan's atmosphere. Icarus, 2016, 278, 88-99.	1.1	14
107	Preliminary observations and simulation of nocturnal variations of airglow temperature and emission rates at Pune (18.5°N), India. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 149, 59-68.	0.6	0
108	Silicon chemistry in the mesosphere and lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3718-3728.	1.2	27

John M C Plane

#	Article	IF	CITATIONS
109	WACCMâ€Đ—Whole Atmosphere Community Climate Model with Dâ€region ion chemistry. Journal of Advances in Modeling Earth Systems, 2016, 8, 954-975.	1.3	86
110	SOLUBILITY OF ROCK IN STEAM ATMOSPHERES OF PLANETS. Astrophysical Journal, 2016, 824, 103.	1.6	42
111	The photolysis of FeOH and its effect on the bottomside of the mesospheric Fe layer. Geophysical Research Letters, 2016, 43, 1373-1381.	1.5	17
112	WACCMâ€D—Improved modeling of nitric acid and active chlorine during energetic particle precipitation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,328.	1.2	32
113	RELICT OLIVINES IN MICROMETEORITES: PRECURSORS AND INTERACTIONS IN THE EARTH'S ATMOSPHERE. Astrophysical Journal, 2016, 831, 197.	1.6	11
114	Under what conditions does (SiO) _N nucleation occur? A bottom-up kinetic modelling evaluation. Physical Chemistry Chemical Physics, 2016, 18, 26913-26922.	1.3	37
115	Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF ₃ and CF ₃ CF ₂ ClÂ(CFC-115). Atmospheric Chemistry and Physics, 2016, 16, 11451-11463.	1.9	16
116	Nighttime atmospheric chemistry of iodine. Atmospheric Chemistry and Physics, 2016, 16, 15593-15604.	1.9	31
117	Laboratory measurements of heterogeneous CO ₂ ice nucleation on nanoparticles under conditions relevant to the Martian mesosphere. Journal of Geophysical Research E: Planets, 2016, 121, 753-769.	1.5	22
118	Dissociative Recombination of FeO ⁺ with Electrons: Implications for Plasma Layers in the Ionosphere. Journal of Physical Chemistry A, 2016, 120, 1369-1376.	1.1	21
119	Reaction Kinetics of Meteoric Sodium Reservoirs in the Upper Atmosphere. Journal of Physical Chemistry A, 2016, 120, 1330-1346.	1.1	18
120	Cosmic and Atmospheric Nanosilicates. Series in Materials Science and Engineering, 2016, , 369-412.	0.1	1
121	The nearâ€global mesospheric potassium layer: Observations and modeling. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7975-7987.	1.2	15
122	MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophysical Research Letters, 2015, 42, 4755-4761.	1.5	56
123	Metallic ions in the upper atmosphere of Mars from the passage of comet C/2013 A1 (Siding Spring). Geophysical Research Letters, 2015, 42, 4670-4675.	1.5	45
124	Discovery of suprathermal Fe ⁺ in Saturn's magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 2720-2738.	0.8	9
125	Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results. Atmospheric Chemistry and Physics, 2015, 15, 273-295.	1.9	36
126	Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds. Atmospheric Chemistry and Physics, 2015, 15, 5195-5210.	1.9	55

#	Article	IF	CITATIONS
127	Diurnal variation of the potassium layer in the upper atmosphere. Geophysical Research Letters, 2015, 42, 3619-3626.	1.5	10
128	Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: Implications for the velocity of cosmic dust entering the atmosphere. Geophysical Research Letters, 2015, 42, 169-175.	1.5	31
129	The Mesosphere and Metals: Chemistry and Changes. Chemical Reviews, 2015, 115, 4497-4541.	23.0	216
130	Mesospheric temperatures and sodium properties measured with the ALOMAR Na lidar compared with WACCM. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 111-119.	0.6	13
131	On the size and velocity distribution of cosmic dust particles entering the atmosphere. Geophysical Research Letters, 2015, 42, 6518-6525.	1.5	63
132	EVALUATING CHANGES IN THE ELEMENTAL COMPOSITION OF MICROMETEORITES DURING ENTRY INTO THE EARTH'S ATMOSPHERE. Astrophysical Journal, 2015, 814, 78.	1.6	25
133	The uptake of HNO3 on meteoric smoke analogues. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 150-160.	0.6	18
134	Mesospheric Removal of Very Long-Lived Greenhouse Gases SF ₆ and CFC-115 by Metal Reactions, Lyman-α Photolysis, and Electron Attachment. Journal of Physical Chemistry A, 2015, 119, 2016-2025.	1.1	18
135	MESOSPHERE Metal Layers. , 2015, , 430-435.		Ο
136	Fe embedded in ice: The impacts of sublimation and energetic particle bombardment. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 103-110.	0.6	4
137	CO2 trapping in amorphous H2O ice: Relevance to polar mesospheric cloud particles. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 92-96.	0.6	2
138	Summer time Fe depletion in the Antarctic mesopause region. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 97-102.	0.6	8
139	RADAR DETECTABILITY STUDIES OF SLOW AND SMALL ZODIACAL DUST CLOUD PARTICLES. II. A STUDY OF THREE RADARS WITH DIFFERENT SENSITIVITY. Astrophysical Journal, 2015, 807, 13.	1.6	15
140	The TromsÃ, programme of in situ and sample return studies of mesospheric nanoparticles. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127, 129-136.	0.6	6
141	First global observations of the mesospheric potassium layer. Geophysical Research Letters, 2014, 41, 5653-5661.	1.5	17
142	Meteor trail characteristics observed by high time resolution lidar. Annales Geophysicae, 2014, 32, 1321-1332.	0.6	4
143	E region ionization enhancement over northern Scandinavia during the 2002 Leonids. , 2014, , .		0
144	The MAGIC meteoric smoke particle sampler. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 118, 127-144.	0.6	9

9

#	Article	IF	CITATIONS
145	Morphology of sporadic <i>E</i> layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination. Journal of Geophysical Research: Space Physics, 2014, 119, 2117-2136.	0.8	102
146	Strong <i>E</i> region ionization caused by the 1767 trail during the 2002 Leonids. Journal of Geophysical Research: Space Physics, 2014, 119, 7880-7888.	0.8	6
147	RADAR DETECTABILITY STUDIES OF SLOW AND SMALL ZODIACAL DUST CLOUD PARTICLES. I. THE CASE OF ARECIBO 430 MHz METEOR HEAD ECHO OBSERVATIONS. Astrophysical Journal, 2014, 796, 41.	1.6	33
148	Experimental Study of the Mesospheric Removal of NF3 by Neutral Meteoric Metals and Lyman-α Radiation. Journal of Physical Chemistry A, 2014, 118, 4120-4129.	1.1	6
149	Low Temperature Kinetics of the CH ₃ OH + OH Reaction. Journal of Physical Chemistry A, 2014, 118, 2693-2701.	1.1	68
150	A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 118, 151-160.	0.6	28
151	Refractory metal nuggets in different types of cosmic spherules. Geochimica Et Cosmochimica Acta, 2014, 131, 247-266.	1.6	34
152	Glyoxal observations in the global marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6160-6169.	1.2	38
153	Inferring the global cosmic dust influx to the Earth's atmosphere from lidar observations of the vertical flux of mesospheric Na. Journal of Geophysical Research: Space Physics, 2014, 119, 7870-7879.	0.8	45
154	Missing SO ₂ oxidant in the coastal atmosphere? – observations from high-resolution measurements of OH and atmospheric sulfur compounds. Atmospheric Chemistry and Physics, 2014, 14, 12209-12223.	1.9	38
155	A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling. Atmospheric Chemistry and Physics, 2014, 14, 5841-5852.	1.9	111
156	Seasonality of halogen deposition in polar snow and ice. Atmospheric Chemistry and Physics, 2014, 14, 9613-9622.	1.9	27
157	Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere. Geophysical Research Letters, 2014, 41, 4753-4760.	1.5	43
158	Short-Lived Trace Gases in the Surface Ocean and the Atmosphere. Springer Earth System Sciences, 2014, , 1-54.	0.1	17
159	Speciation analysis of iodine and bromine at picogram-per-gram levels in polar ice. Analytical and Bioanalytical Chemistry, 2013, 405, 647-654.	1.9	21
160	LOCUS: Low cost upper atmosphere sounder. Proceedings of SPIE, 2013, , .	0.8	2
161	On the mechanism of iodine oxide particle formation. Physical Chemistry Chemical Physics, 2013, 15, 15612.	1.3	52
162	Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nature Geoscience, 2013, 6, 108-111.	5.4	256

#	Article	IF	CITATIONS
163	Sea ice dynamics influence halogen deposition to Svalbard. Cryosphere, 2013, 7, 1645-1658.	1.5	27
164	Plutoniumâ€238 observations as a test of modeled transport and surface deposition of meteoric smoke particles. Geophysical Research Letters, 2013, 40, 4454-4458.	1.5	29
165	Halogen species record Antarctic sea ice extent over glacial–interglacial periods. Atmospheric Chemistry and Physics, 2013, 13, 6623-6635.	1.9	47
166	On the nucleation of dust in oxygen-rich stellar outflows. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120335.	1.6	30
167	Iodine chemistry in the eastern Pacific marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 887-904.	1.2	46
168	A global atmospheric model of meteoric iron. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9456-9474.	1.2	105
169	A global model of meteoric sodium. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,442.	1.2	84
170	In situ observations of meteor smoke particles (MSP) during the Geminids 2010: constraints on MSP size, work function and composition. Annales Geophysicae, 2012, 30, 1661-1673.	0.6	39
171	Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmospheric Chemistry and Physics, 2012, 12, 3939-3949.	1.9	157
172	DOAS measurements of formaldehyde and glyoxal above a south-east Asian tropical rainforest. Atmospheric Chemistry and Physics, 2012, 12, 5949-5962.	1.9	49
173	Summertime NO _x measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles?. Atmospheric Chemistry and Physics, 2012, 12, 989-1002.	1.9	36
174	Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere. Atmospheric Chemistry and Physics, 2012, 12, 4387-4398.	1.9	45
175	Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer. Atmospheric Chemistry and Physics, 2012, 12, 8575-8587.	1.9	64
176	Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources. Atmospheric Chemistry and Physics, 2012, 12, 11609-11617.	1.9	68
177	O2(a1Δg) + Mg, Fe, and Ca: Experimental kinetics and formulation of a weak collision, multiwell master equation with spin-hopping. Journal of Chemical Physics, 2012, 137, 014310.	1.2	15
178	A New Model for Magnesium Chemistry in the Upper Atmosphere. Journal of Physical Chemistry A, 2012, 116, 6240-6252.	1.1	32
179	Insights into the Photochemical Transformation of Iodine in Aqueous Systems: Humic Acid Photosensitized Reduction of Iodate. Environmental Science & Technology, 2012, 46, 11854-11861.	4.6	45
180	Cosmic dust in the earth's atmosphere. Chemical Society Reviews, 2012, 41, 6507.	18.7	227

#	Article	IF	CITATIONS
181	Atmospheric Chemistry of Iodine. Chemical Reviews, 2012, 112, 1773-1804.	23.0	482
182	Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle's final launch. Journal of Geophysical Research, 2012, 117, .	3.3	16
183	Fractionation and fragmentation of glass cosmic spherules during atmospheric entry. Geochimica Et Cosmochimica Acta, 2012, 99, 110-127.	1.6	31
184	On the sodium D line emission in the terrestrial nightglow. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 74, 181-188.	0.6	19
185	Kinetic studies of atmospherically relevant silicon chemistry. Part III: Reactions of Si ⁺ and SiO ⁺ with O ₃ , and Si ⁺ with O ₂ . Physical Chemistry Chemical Physics, 2011, 13, 3764-3774.	1.3	14
186	Seasonal variations of the mesospheric Fe layer at Rothera, Antarctica (67.5°S, 68.0°W). Journal of Geophysical Research, 2011, 116, .	3.3	25
187	A study of space shuttle plumes in the lower thermosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	15
188	FeO emission in the mesosphere: Detectability, diurnal behavior, and modeling. Journal of Geophysical Research, 2011, 116, .	3.3	19
189	Meteoric calcium. Nature Chemistry, 2011, 3, 900-900.	6.6	3
190	Concurrent observations of atomic iodine, molecular iodine and ultrafine particles in a coastal environment. Atmospheric Chemistry and Physics, 2011, 11, 2545-2555.	1.9	40
191	Hydrogen oxide photochemistry in the northern Canadian spring time boundary layer. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
192	On the role of metal silicate molecules as ice nuclei. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2192-2200.	0.6	21
193	Bite-outs and other depletions of mesospheric electrons. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2201-2211.	0.6	25
194	A photo-chemical method for the production of olivine nanoparticles as cosmic dust analogues. Icarus, 2011, 212, 373-382.	1.1	39
195	A kinetic study of Mg+ and Mg-containing ions reacting with O3, O2, N2, CO2, N2O and H2O: implications for magnesium ion chemistry in the upper atmosphere. Physical Chemistry Chemical Physics, 2011, 13, 6352.	1.3	34
196	Heavy Metals in Antarctic and Greenland Snow and Ice Cores: Man Induced Changes During the Last Millennia and Natural Variations During the Last Climatic Cycles. , 2011, , 19-46.		1
197	An aerosol chamber investigation of the heterogeneous ice nucleating potential of refractory nanoparticles. Atmospheric Chemistry and Physics, 2010, 10, 1227-1247.	1.9	38
198	Coupling of HO _x , NO _x and halogen chemistry in the antarctic boundary layer. Atmospheric Chemistry and Physics, 2010, 10, 10187-10209.	1.9	56

#	Article	IF	CITATIONS
199	Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. Atmospheric Chemistry and Physics, 2010, 10, 1031-1055.	1.9	66
200	Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff. Atmospheric Chemistry and Physics, 2010, 10, 11823-11838.	1.9	34
201	The chemistry of OH and HO ₂ radicals in the boundary layer over the tropical Atlantic Ocean. Atmospheric Chemistry and Physics, 2010, 10, 1555-1576.	1.9	156
202	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	1.9	130
203	lodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. Atmospheric Chemistry and Physics, 2010, 10, 2975-2999.	1.9	125
204	Measurements of iodine monoxide at a semi polluted coastal location. Atmospheric Chemistry and Physics, 2010, 10, 3645-3663.	1.9	19
205	Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean. Atmospheric Chemistry and Physics, 2010, 10, 4611-4624.	1.9	161
206	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010. Atmospheric Chemistry and Physics, 2010, 10, 563-563.	1.9	5
207	Physical properties of iodate solutions and the deliquescence of crystalline I ₂ O ₅ and HIO ₃ . Atmospheric Chemistry and Physics, 2010, 10, 12251-12260.	1.9	33
208	The Faraday filter-based spectrometer for observing sodium nightglow and studying atomic and molecular oxygen associated with the sodium chemistry in the mesopause region. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 1260-1269.	0.6	13
209	DOAS observations of formaldehyde and its impact on the HOx balance in the tropical Atlantic marine boundary layer. Journal of Atmospheric Chemistry, 2010, 66, 167-178.	1.4	17
210	Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. Journal of Atmospheric Chemistry, 2010, 67, 87-140.	1.4	97
211	Studies of the Formation and Growth of Aerosol from Molecular Iodine Precursor. Zeitschrift Fur Physikalische Chemie, 2010, 224, 1095-1117.	1.4	56
212	Radar, lidar, and optical observations in the polar summer mesosphere shortly after a space shuttle launch. Journal of Geophysical Research, 2010, 115, .	3.3	18
213	Evidence of reactive iodine chemistry in the Arctic boundary layer. Journal of Geophysical Research, 2010, 115, .	3.3	76
214	Can molecular diffusion explain Space Shuttle plume spreading?. Geophysical Research Letters, 2010, 37, .	1.5	21
215	Mesospheric implications for the reaction of Si ⁺ with O ₂ (<i>a</i> ¹ î" _g). Geophysical Research Letters, 2010, 37, .	1.5	5
216	Dynamics of Mg ⁺ + H ₂ O + He: Capture, Collisional Stabilization and Collision-Induced Dissociation, Journal of Physical Chemistry A, 2010, 114, 6472-6479	1.1	9

#	Article	IF	CITATIONS
217	The formation and growth of Fe2O3 nanoparticles from the photo-oxidation of iron pentacarbonyl. Journal of Aerosol Science, 2010, 41, 475-489.	1.8	12
218	A kinetic study of reactions of calcium-containing molecules with O and H atoms: implications for calcium chemistry in the upper atmosphere. Physical Chemistry Chemical Physics, 2010, 12, 9094.	1.3	15
219	Meteoric ion layers in the Martian atmosphere. Faraday Discussions, 2010, 147, 349.	1.6	51
220	Photoelectric emission from the alkali metal doped vacuum-ice interface. Journal of Chemical Physics, 2009, 130, 054702.	1.2	3
221	High bromine oxide concentrations in the semi-polluted boundary layer. Atmospheric Environment, 2009, 43, 3811-3818.	1.9	30
222	Atmospheric depletion of mercury over Antarctica during glacial periods. Nature Geoscience, 2009, 2, 505-508.	5.4	61
223	Determination of the O–IO bond dissociation energy by photofragment excitation spectroscopy. Chemical Physics Letters, 2009, 474, 79-83.	1.2	14
224	Theoretical Study of Mg ⁺ â^'X and [Xâ^'Mgâ^'Y] ⁺ Complexes Important in the Chemistry of Ionospheric Magnesium (X, Y = H ₂ O, CO _{2} , N ₂ ,) Tj	etqiqo o c) rg B T /Overlo
225	First observation of micrometeoroid differential ablation in the atmosphere. Geophysical Research Letters, 2009, 36, .	1.5	73
226	Photochemistry of OIO: Laboratory study and atmospheric implications. Geophysical Research Letters, 2009, 36, .	1.5	31
227	Reactive iodine species in a semiâ \in polluted environment. Geophysical Research Letters, 2009, 36, .	1.5	73
228	Kinetic studies of atmospherically relevant silicon chemistry : Part I: Silicon atom reactions. Physical Chemistry Chemical Physics, 2009, 11, 671-678.	1.3	26
229	Kinetic studies of atmospherically relevant silicon chemistry. Part II: Silicon monoxide reactions. Physical Chemistry Chemical Physics, 2009, 11, 10945.	1.3	27
230	Seasonal and diurnal variation of electron and iron concentrations at the meteor heights above Arecibo. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 49-60.	0.6	15
231	Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature, 2008, 453, 1232-1235.	13.7	432
232	Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3,) Tj ETQq	0 0 0 g rgB 1.3 rgB	[/Qyerlock 10
233	Siderophile metal fallout to Greenland from the 1991 winter eruption of Hekla (Iceland) and during the global atmospheric perturbation of Pinatubo. Chemical Geology, 2008, 255, 78-86.	1.4	25

#	Article	IF	CITATIONS
235	Theoretical Study of Ca ⁺ â^'X and Yâ^'Ca ⁺ â^'X Complexes Important in the Chemistry of Ionospheric Calcium (X, Y = H ₂ O, CO ₂ , N ₂ ,) Tj ETQq1 1 0.75	84 3.1 4 rgBT	™ ∫@verlock
236	Chemistry of the Antarctic Boundary Layer and the Interface with Snow: an overview of the CHABLIS campaign. Atmospheric Chemistry and Physics, 2008, 8, 3789-3803.	1.9	73
237	On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O ₃ , HO _x , NO _x and the Hg lifetime. Atmospheric Chemistry and Physics, 2008. 8. 887-900.	1.9	153
238	DMS and MSA measurements in the Antarctic Boundary Layer: impact of BrO on MSA production. Atmospheric Chemistry and Physics, 2008, 8, 2985-2997.	1.9	87
239	A chemical model of meteoric ablation. Atmospheric Chemistry and Physics, 2008, 8, 7015-7031.	1.9	199
240	Boundary Layer Halogens in Coastal Antarctica. Science, 2007, 317, 348-351.	6.0	276
241	Satellite measurements of the global mesospheric sodium layer. Atmospheric Chemistry and Physics, 2007, 7, 4107-4115.	1.9	48
242	An overview of snow photochemistry: evidence, mechanisms and impacts. Atmospheric Chemistry and Physics, 2007, 7, 4329-4373.	1.9	554
243	Halogens and their role in polar boundary-layer ozone depletion. Atmospheric Chemistry and Physics, 2007, 7, 4375-4418.	1.9	593
244	Night-time radical chemistry during the NAMBLEX campaign. Atmospheric Chemistry and Physics, 2007, 7, 587-598.	1.9	28
245	A kinetic study of the reactions of Ca+ ions with O3, O2, N2, CO2 and H2O. Physical Chemistry Chemical Physics, 2007, 9, 4357.	1.3	32
246	On the photochemistry of IONO2 :  absorption cross section (240–370 nm) and photolysis product yields at 248 nm. Physical Chemistry Chemical Physics, 2007, 9, 5599.	1.3	17
247	Effect of ice particles on the mesospheric potassium layer at Spitsbergen (78°N). Journal of Geophysical Research, 2007, 112, .	3.3	19
248	Retrieval of global mesospheric sodium densities from the Odin satellite. Geophysical Research Letters, 2007, 34, .	1.5	30
249	Potential climatic effects of meteoric smoke in the Earth's paleoâ€atmosphere. Geophysical Research Letters, 2007, 34, .	1.5	11
250	On the global distribution of sporadic sodium layers. Geophysical Research Letters, 2007, 34, .	1.5	26
251	Variability of the mesospheric nightglow during the 2002 Leonid storms. Advances in Space Research, 2007, 39, 562-566.	1.2	8
252	Kinetic study of the reactions of the sodium dimer (Na2) with a range of atmospheric species. Physical Chemistry Chemical Physics, 2006, 8, 3104.	1.3	0

#	Article	IF	CITATIONS
253	A kinetic study of the reactions of Fe+with N2O, N2, O2, CO2and H2O, and the ligand-switching reactions Fe+A·X + Y → Fe+·Y + X (X = N2, O2, CO2; Y = O2, H2O). Physical Chemistry Chemical Physics, 2006, 8, 503-512.	1.3	29
254	A kinetic study of the reactions FeO++ O, Fe+·N2+ O, Fe+·O2+ O and FeO++ CO: implications for sporadic E layers in the upper atmosphere. Physical Chemistry Chemical Physics, 2006, 8, 1812-1821.	1.3	36
255	Wavelength-dependence of the photolysis of diiodomethane in seawater. Geophysical Research Letters, 2006, 33, .	1.5	21
256	The mass balance of mercury in the springtime arctic environment. Geophysical Research Letters, 2006, 33, .	1.5	106
257	A Theoretical Study of the Ionâ^'Molecule Chemistry of K+Â∙X Complexes (X = O, O2, N2, CO2, H2O): Implications for the Upper Atmosphere. Journal of Physical Chemistry A, 2006, 110, 3093-3100.	1.1	18
258	Photoemission from Sodium on Ice:Â A Mechanism for Positive and Negative Charge Coexistence in the Mesosphere. Journal of Physical Chemistry B, 2006, 110, 3860-3863.	1.2	14
259	Kinetic Study of the Reaction Ca++ N2O from 188 to 1207 K. Journal of Physical Chemistry A, 2006, 110, 7874-7881.	1.1	12
260	An Experimental and Theoretical Study of the Reactions OIO + NO and OIO + OH. Journal of Physical Chemistry A, 2006, 110, 93-100.	1.1	59
261	A climatic control on the accretion of meteoric and super-chondritic iridium–platinum to the Antarctic ice cap. Earth and Planetary Science Letters, 2006, 250, 459-469.	1.8	32
262	Fractal growth modelling of nanoparticles. Journal of Aerosol Science, 2006, 37, 1737-1749.	1.8	41
263	Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002. Atmospheric Chemistry and Physics, 2006, 6, 2193-2214.	1.9	70
264	OH and HO ₂ chemistry during NAMBLEX: roles of oxygenates, halogen oxides and heterogeneous uptake. Atmospheric Chemistry and Physics, 2006, 6, 1135-1153.	1.9	82
265	Measurements and modelling of I ₂ , IO, OIO, BrO and NO ₃ in the mid-latitude marine boundary layer. Atmospheric Chemistry and Physics, 2006, 6, 1513-1528.	1.9	113
266	The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmospheric Chemistry and Physics, 2006, 6, 2241-2272.	1.9	65
267	Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. Atmospheric Chemistry and Physics, 2006, 6, 883-895.	1.9	138
268	A laboratory study of meteor smoke analogues: Composition, optical properties and growth kinetics. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 2182-2202.	0.6	72
269	Influence of submonolayer sodium adsorption on the photoemission of the Cu(111)/water ice surface. Journal of Chemical Physics, 2006, 125, 224702.	1.2	15
270	Inorganic aerosol formation and growth in the Earth's lower and upper atmosphere. European Physical Journal Special Topics, 2006, 139, 239-256.	0.2	1

#	Article	IF	CITATIONS
271	Formation Pathways and Composition of Iodine Oxide Ultra-Fine Particles. Environmental Chemistry, 2005, 2, 299.	0.7	107
272	The D 2 /D 1 sodium nightglow intensity ratio as a mesospheric probe. , 2005, 5979, 289.		0
273	Modelling the impact of noctilucent cloud formation on atomic oxygen and other minor constituents of the summer mesosphere. Atmospheric Chemistry and Physics, 2005, 5, 1027-1038.	1.9	45
274	The absorption cross-section and photochemistry of OIO. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 68-77.	2.0	24
275	Uptake of Fe, Na and K atoms on low-temperature ice: implications for metal atom scavenging in the vicinity of polar mesospheric clouds. Physical Chemistry Chemical Physics, 2005, 7, 3970.	1.3	36
276	The Photolysis of Dihalomethanes in Surface Seawater. Environmental Science & Technology, 2005, 39, 7097-7101.	4.6	42
277	Impact of halogen monoxide chemistry upon boundary layer OH and HO2concentrations at a coastal site. Geophysical Research Letters, 2005, 32, .	1.5	113
278	Seasonal variations of the Na and Fe layers at the South Pole and their implications for the chemistry and general circulation of the polar mesosphere. Journal of Geophysical Research, 2005, 110, .	3.3	69
279	Antarctic mesospheric clouds formed from space shuttle exhaust. Geophysical Research Letters, 2005, 32, .	1.5	46
280	Variability of the mesospheric nightglow sodium D2/D1ratio. Journal of Geophysical Research, 2005, 110, .	3.3	31
281	Removal of Meteoric Iron on Polar Mesospheric Clouds. Science, 2004, 304, 426-428.	6.0	67
282	Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature, 2004, 432, 1011-1014.	13.7	132
283	A Theoretical Study of the Oxidation of Hg0to HgBr2in the Troposphere. Environmental Science & Technology, 2004, 38, 1772-1776.	4.6	285
284	Bromine oxide in the mid-latitude marine boundary layer. Geophysical Research Letters, 2004, 31, .	1.5	87
285	Novel iodine chemistry in the marine boundary layer. Geophysical Research Letters, 2004, 31, .	1.5	196
286	Negligible long-term temperature trend in the upper atmosphere at 23°S. Journal of Geophysical Research, 2004, 109, .	3.3	20
287	Absolute absorption cross-section and photolysis rate of I ₂ . Atmospheric Chemistry and Physics, 2004, 4, 1443-1450.	1.9	107
288	Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine. Atmospheric Chemistry and Physics, 2004, 4, 701-713.	1.9	252

#	Article	IF	CITATIONS
289	A time-resolved model of the mesospheric Na layer: constraints on the meteor input function. Atmospheric Chemistry and Physics, 2004, 4, 627-638.	1.9	150
290	Recent applications of Differential Optical Absorption Spectroscopy: Halogen chemistry in the lower troposphere. European Physical Journal Special Topics, 2004, 121, 223-238.	0.2	6
291	Laboratory studies and modelling of mesospheric iron chemistry. Advances in Space Research, 2003, 32, 699-708.	1.2	27
292	Atomic oxygen depletion in the vicinity of noctilucent clouds. Advances in Space Research, 2003, 31, 2075-2084.	1.2	17
293	Atmospheric Chemistry of Meteoric Metals. Chemical Reviews, 2003, 103, 4963-4984.	23.0	315
294	The uptake of atomic oxygen on ice films: Implications for noctilucent clouds. Physical Chemistry Chemical Physics, 2003, 5, 4129.	1.3	30
295	A kinetic study of the reactions of iron oxides and hydroxides relevant to the chemistry of iron in the upper mesosphere. Physical Chemistry Chemical Physics, 2003, 5, 1407-1418.	1.3	55
296	Kinetic Study of the Recombination Reaction of Gas Phase Pd(aS0) with O2 from 294 to 523 K. Journal of Physical Chemistry A, 2003, 107, 3747-3751.	1.1	6
297	MESOSPHERE Metal Layers. , 2003, , 1265-1271.		3
298	Absolute photolysis cross-sections for NaHCO3 , NaOH, NaO, NaO2and NaO3 : implications for sodium chemistry in the upper mesosphere. Physical Chemistry Chemical Physics, 2002, 4, 16-23.	1.3	45
299	Active chlorine release from marine aerosols: Roles for reactive iodine and nitrogen species. Journal of Geophysical Research, 2002, 107, ACH 10-1.	3.3	63
300	Retrieval of vertical profiles of NO3 from zenith sky measurements using an optimal estimation method. Journal of Geophysical Research, 2002, 107, ACH 10-1-ACH 10-14.	3.3	13
301	Observations of NO3 concentration profiles in the troposphere. Journal of Geophysical Research, 2002, 107, ACH 11-1-ACH 11-14.	3.3	29
302	A Study of the Recombination of IO with NO2and the Stability of INO3:Â Implications for the Atmospheric Chemistry of Iodine. Journal of Physical Chemistry A, 2002, 106, 8634-8641.	1.1	33
303	High resolution spectroscopy of the OIO radical: Implications for the ozone-depleting potential of iodine. Geophysical Research Letters, 2002, 29, 95-1-95-4.	1.5	44
304	A study of the role of ion–molecule chemistry in the formation of sporadic sodium layers. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 845-860.	0.6	73
305	A theoretical study of the ligand-exchange reactions of Na+·X complexes (X=O,O2,N2,CO2 and H2O): implications for the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 863-870.	0.6	22
306	Observations of OIO in the remote marine boundary layer. Geophysical Research Letters, 2001, 28, 1945-1948.	1.5	83

#	Article	lF	CITATIONS
307	Observations of persistent Leonid meteor trails: 2. Photometry and numerical modeling. Journal of Geophysical Research, 2001, 106, 21525-21541.	3.3	25
308	A study of the reaction between NaHCO3and H: Apparent closure on the chemistry of mesospheric Na. Journal of Geophysical Research, 2001, 106, 1733-1739.	3.3	34
309	A kinetic study of the reactions of MgO with H2O, CO2 and O2: implications for magnesium chemistry in the mesosphere. Physical Chemistry Chemical Physics, 2001, 3, 4733-4740.	1.3	27
310	Kinetic Study of the Gas-Phase Reaction of Ca(1S0) with O2from 296 to 623 K. Journal of Physical Chemistry A, 2001, 105, 3515-3520.	1.1	10
311	Kinetic Study of the Reactions of CaO with H2O, CO2, O2, and O3:  Implications for Calcium Chemistry in the Mesosphere. Journal of Physical Chemistry A, 2001, 105, 7047-7056.	1.1	19
312	Yuk L. Yung and William B. DeMore: Photochemistry of Planetary Atmospheres. Journal of Atmospheric Chemistry, 2001, 39, 215-216.	1.4	0
313	Polar cap Sporadic-E: part 2, modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1169-1176.	0.6	48
314	Polar cap Sporadic-E: Part 1, Observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1155-1167.	0.6	33
315	ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 750-778.	0.8	44
316	Intercomparison of Formaldehyde Measurements in Clean and Polluted Atmospheres. Journal of Atmospheric Chemistry, 2000, 37, 53-80.	1.4	59
317	The role of sodium bicarbonate in the nucleation of noctilucent clouds. Annales Geophysicae, 2000, 18, 807-814.	0.6	51
318	Atmospheric Ca and Ca+layers: Midlatitude observations and modeling. Journal of Geophysical Research, 2000, 105, 27131-27146.	3.3	75
319	The nitrate radical in the remote marine boundary layer. Journal of Geophysical Research, 2000, 105, 24191-24204.	3.3	95
320	Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combination of measurements and model. Journal of Geophysical Research, 2000, 105, 26379-26392.	3.3	13
321	A modeling study of iodine chemistry in the marine boundary layer. Journal of Geophysical Research, 2000, 105, 14371-14385.	3.3	252
322	Observations of iodine monoxide in the remote marine boundary layer. Journal of Geophysical Research, 2000, 105, 14363-14369.	3.3	160
323	The reactions of FeO with O3, H2, H2O, O2 and CO2. Physical Chemistry Chemical Physics, 2000, 2, 2335-2343.	1.3	73
324	FeO "Orange Arc―Emission Detected in Optical Spectrum of Leonid Persistent Train. , 2000, , 429-438.		7

#	Article	IF	CITATIONS
325	The Dynamical Evolution of a Tubular Leonid Persistent Train. , 2000, , 471-488.		2
326	Metallic layers in the mesopause and lower thermosphere region. Advances in Space Research, 1999, 24, 1559-1570.	1.2	67
327	Observations of the Nitrate Radical in the Marine Boundary Layer. Journal of Atmospheric Chemistry, 1999, 33, 129-154.	1.4	113
328	The Weybourne Atmospheric Observatory. Journal of Atmospheric Chemistry, 1999, 33, 107-110.	1.4	26
329	A study of the reactions of Fe and FeO with NO2, and the structure and bond energy of FeO2. Physical Chemistry Chemical Physics, 1999, 1, 1843-1849.	1.3	30
330	An experimental and theoretical study of the reactions NaO+H2O(D2O)→NaOH(D)+OH(OD). Physical Chemistry Chemical Physics, 1999, 1, 4713-4720.	1.3	13
331	Mesospheric Na layer at 40°N: Modeling and observations. Journal of Geophysical Research, 1999, 104, 3773-3788.	3.3	96
332	On the photochemical production of new particles in the coastal boundary layer. Geophysical Research Letters, 1999, 26, 1707-1710.	1.5	197
333	The terrestrial potassium layer (75-110 km) between 71°S and 54°N: Observations and modeling. Journal of Geophysical Research, 1999, 104, 17173-17186.	3.3	45
334	The Dynamical Evolution of a Tubular Leonid Persistent Train. Earth, Moon and Planets, 1998, 82/83, 471-488.	0.3	11
335	FeO "Orange Arc" Emission Detected in Optical Spectrum of Leonid Persistent Train. Earth, Moon and Planets, 1998, 82/83, 429-438.	0.3	18
336	Mesospheric Na layer at extreme high latitudes in summer. Journal of Geophysical Research, 1998, 103, 6381-6389.	3.3	45
337	A study of the reactions of Fe+ with O3, O2 and N2. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3067-3075.	1.7	31
338	A model of meteoric iron in the upper atmosphere. Journal of Geophysical Research, 1998, 103, 10913-10925.	3.3	67
339	An ion-molecule mechanism for the formation of neutral sporadic Na layers. Journal of Geophysical Research, 1998, 103, 6349-6359.	3.3	146
340	Dynamical and chemical aspects of the mesospheric Na "wall―event on October 9,1993 during the Airborne Lidar and Observations of Hawaiian Airglow (ALOHA) campaign. Journal of Geophysical Research, 1998, 103, 6361-6380.	3.3	39
341	An experimental and theoretical study of the clustering reactions between Na+ ions and N2, O2 and CO2. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2619-2629.	1.7	38
342	Simultaneous observations of nitrate and peroxy radicals in the marine boundary layer. Journal of Geophysical Research, 1997, 102, 18917-18933.	3.3	98

#	Article	IF	CITATIONS
343	Observations of the nitrate radical in the free troposphere at Izaña de Tenerife. Journal of Geophysical Research, 1997, 102, 10613-10622.	3.3	42
344	Report Group 3 $\hat{a} \in$ "Photochemistry in the sea-surface microlayer. , 1997, , 71-92.		7
345	Individual Reports from TOPAS Contributors. , 1997, , 347-386.		0
346	Interaction between nitrogen and sulfur cycles in the polluted marine boundary layer. Journal of Geophysical Research, 1996, 101, 1379-1386.	3.3	43
347	A kinetic study of the reactions of Fe(a5D) and Fe+(a6D) with N2O over the temperature range 294–850 K. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4371-4376.	1.7	32
348	Intercomparison of instruments for tropospheric measurements using differential optical absorption spectroscopy. Journal of Atmospheric Chemistry, 1996, 23, 51-80.	1.4	31
349	Nighttime radical chemistry in the San Joaquin Valley. Atmospheric Environment, 1995, 29, 2887-2897.	1.9	79
350	A chemical-dynamical model of wave-driven sodium fluctuations. Geophysical Research Letters, 1995, 22, 2861-2864.	1.5	38
351	Laboratory study of the reactions Mg + O3 and MgO + O3. Implications for the chemistry of magnesium in the upper atmosphere. Faraday Discussions, 1995, 100, 411.	1.6	44
352	Experimental evidence for photochemical control of the atmospheric sodium layer. Journal of Geophysical Research, 1995, 100, 18909.	3.3	39
353	Laboratory studies of the chemistry of meteoric metals. , 1994, , 313-367.		22
354	Kinetic study of the reaction between Fe and O3 under mesospheric conditions. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 31.	1.7	37
355	Experimental and theoretical study of the reaction Fe + O2+ N2? FeO2+ N2. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 395.	1.7	53
356	A modelling investigation of sudden sodium layers. Geophysical Research Letters, 1993, 20, 2841-2844.	1.5	30
357	A kinetic investigation of the reaction Ca + O3over the temperature range 213–383 K. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 763-769.	1.7	15
358	An <i>ab initio</i> study of dissociative electron attachment to NaHCO ₃ and NaCO ₃ , and the role of these reactions in the formation of sudden sodium layers. Geophysical Research Letters, 1993, 20, 21-24.	1.5	22
359	A study of the reaction NaO ₂ + O → NaO+ O ₂ : Implications for the chemistry of sodium in the upper atmosphere. Journal of Geophysical Research, 1993, 98, 23207-23222.	3.3	56
360	A kinetic investigation of the reactions sodium + ozone and sodium monoxide + ozone over the temperature range 207-377 K. The Journal of Physical Chemistry, 1993, 97, 4459-4467.	2.9	35

#	Article	IF	CITATIONS
361	Unusual kinetic behavior of the reactions magnesium + oxygen + M and calcium + oxygen + M (M = N2,) Tj ETQq1	1 0.7843 2.9	14.rgBT /0
362	Experimental and theoretical study of the reaction K+HCl. Journal of Chemical Physics, 1993, 99, 7696-7702.	1.2	13
363	Unusual kinetic behavior of the reactions magnesium + oxygen + M and calcium + oxygen + M (M = N2,) Tj ETQq1 Physical Chemistry, 1993, 97, 12422-12422.	1 0.7843 2.9	14 rgBT /0 1
364	A kinetic investigation of the reaction magnesium (1S) + nitrous oxide over the temperature range 382-893 K. The Journal of Physical Chemistry, 1992, 96, 1296-1301.	2.9	16
365	Differential optical absorption spectrometer for measuring atmospheric trace gases. Review of Scientific Instruments, 1992, 63, 1867-1876.	0.6	72
366	A Comparison between the Oxidation Reactions of the Alkali and Alkaline Earth Atoms. , 1992, , 29-56.		11
367	The chemistry of meteoric metals in the Earth's upper atmosphere. International Reviews in Physical Chemistry, 1991, 10, 55-106.	0.9	201
368	Measurement of the average emission lifetimes of the A1â^++–X1â~+and the orange Arc bands of CaO. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 677-680.	1.7	8
369	Study of nighttime NO 3 chemistry by differential optical absorption spectroscopy. , 1991, 1433, 8.		6
370	A study of the reactions between Ba(1S) and N2O, O2, and CO2. Journal of Chemical Physics, 1991, 94, 7193-7203.	1.2	19
371	Theoretical and experimental determination of the lithium and sodium superoxide bond dissociation energies [Erratum to document cited in CA110(18):161238p]. The Journal of Physical Chemistry, 1990, 94, 1010-1010.	2.9	2
372	A kinetic investigation of the calcium/calcium oxide system: non-Arrhenius behavior of the reaction calcium(1S) + nitrous oxide over the temperature range 250-898 K and a study of the reaction calcium oxide + oxygen atoms. The Journal of Physical Chemistry, 1990, 94, 5255-5261.	2.9	26
373	Kinetic study of the reaction potassium + oxygen + M (M = nitrogen, helium) from 250 to 1103 K. The Journal of Physical Chemistry, 1990, 94, 4161-4167.	2.9	24
374	Light-induced alteration of the photophysical properties of dissolved organic matter in seawater. Journal of Sea Research, 1990, 27, 33-41.	1.0	38
375	Gas-Phase Atmospheric Oxidation of Biogenic Sulfur Compounds. ACS Symposium Series, 1989, , 404-423.	0.5	28
376	An experimental and theoretical study of the reactions Na+HCl and Na+DCl. Journal of Chemical Physics, 1989, 91, 6177-6186.	1.2	17
377	Theoretical and experimental determination of the lithium and sodium superoxide bond dissociation energies. The Journal of Physical Chemistry, 1989, 93, 3141-3145.	2.9	27
378	Kinetic study of the reactions sodium + oxygen + nitrogen and sodium + nitrous oxide over an extended temperature range. The Journal of Physical Chemistry, 1989, 93, 3135-3140.	2.9	32

#	Article	IF	CITATIONS
379	Determination of the absolute photolysis cross section of sodium superoxide at 230 K: evidence for the formation of sodium tetroxide in the gas phase. The Journal of Physical Chemistry, 1989, 93, 7399-7404.	2.9	12
380	Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environmental Science & Technology, 1988, 22, 1156-1160.	4.6	295
381	Study of the reaction Li + H2O over the temperature range 850–1000 K by time-resolved laser-induced fluorescence of Li(22PJ–22S1/2). Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 273-285.	1.1	10
382	A study of the reaction Li + O2 + M (M = N2, He) over the temperature range 267-1100 K by time-resolved laser-induced fluorescence of Li(22PJ-22S1/2). The Journal of Physical Chemistry, 1988, 92, 3884-3890.	2.9	13
383	A study of the reaction Li+HCl by the technique of timeâ€resolved laserâ€induced fluorescence spectroscopy of Li (2 2PJ–2 2S1/2, λ=670.7 nm) between 700 and 1000 K. Journal of Chemical Physics 87, 4606-4611.	s,112987,	18
384	A kinetic study of the reaction lithium + nitrous oxide: non-Arrhenius behavior over the temperature range 363-900 K. The Journal of Physical Chemistry, 1987, 91, 6552-6557.	2.9	30
385	Photochemical Modeling Applied to Natural Waters. ACS Symposium Series, 1987, , 250-267.	0.5	14
386	Absolute third-order rate constants for the recombination reactions between alkali-metal and iodine atoms and the measurement for Rb + I + He. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 897.	1.1	11
387	Determination of the absolute rate constant for the reaction O + NaO → Na + O2by time-resolved atomic chemiluminescence at λ= 589 nm [Na(32PJ)→ Na(32S1/2)+hν]. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 2047-2052.	1.1	50
388	Measurement of the absolute third-order rate constant for the reaction between potassium + atomic iodine + helium by time-resolved atomic resonance fluorescence monitoring of iodine atoms in the vacuum ultraviolet (I(5p46s(2P3/2))-I(5p5(2P03/2))) coupled with steady atomic resonance fluorescence on atomic potassium (K(52PI)-K(42S1/2)). The Journal of Physical Chemistry, 1986, 90, 501-507.	2.9	6
389	Rate constant for the reaction Na + O2 + N2 → NaO2 + N2 under mesospheric conditions. Journal of Photochemistry and Photobiology, 1986, 32, 1-7.	0.6	9
390	Temperature dependence of the absolute third-order rate constant for the reaction between Na + O2+ N2over the range 571–1016 K studied by time-resolved atomic resonance absorption spectroscopy. Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 301-318.	1.1	26
391	Measurement of the absolute third-order rate constant for the reaction between Cs + OH + He determined by time-resolved molecular resonance-fluorescence spectroscopy, OH(A2Σ+–X2Î), coupled with steady atomic resonance fluorescence, Cs(72PJ–62S1/2). Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 769-782	1.1	11
392	Transactions 2, 1985, 81, 769-782 Measurement of the absolute third-order rate constant for the reaction between Cs + I + He by time-resolved atomic resonance fluorescence monitoring of iodine atoms in the vacuum ultraviolet region {I[6s(2PJ)] $\hat{a}\in$ "I[5p5(2P3/2)]} coupled with steady atomic resonance fluorescence on atomic caesium [Cs(72P]) $\hat{a}\in$ "Cs(62S1/2)] in the visible region. Journal of the Chemical Society, Faraday Transactions 2,	1.1	5
393	1985, 81, 1675-1693. Determination of the absolute second-order rate constant for the reaction Na + O3? NaO + O2. Journal of the Chemical Society Chemical Communications, 1985, , 1216.	2.0	5
394	Absolute third-order rate constant for the reaction between Rb + OH + He determined by time-resolved molecular resonance-fluorescence spectroscopy, OH (A2Σ+–X2Î), coupled with steady atomic resonance-fluorescence measurements, Rb(62PJ–52S1/2). Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 561-573.	1.1	13
395	The collisional cross sections for quenching of OH(A $2\hat{i} \pm 1$) by HCl and DCl determined by time-resolved resonance fluorescence OH(A $2\hat{i} \pm + \hat{a}^{*}X2\hat{i}$). Journal of Photochemistry and Photobiology, 1984, 26, 1-8.	0.6	2
396	A direct kinetic study of the reaction K + OH + He → KOH + He by time-resolved molecular resonance-fluorescence spectroscopy, OH(A2â~+–X2Î), coupled with steady atomic fluorescence spectroscopy, K(52PJ–42S1/2). Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 1465-1483.	1.1	11

#	Article	IF	CITATIONS
397	Determination of the absolute third-order rate constant for the reaction between Na + OH + He by time-resolved molecular resonance-fluorescence spectroscopy, OH(A2â ⁺ +–X2Î), coupled with steady atomic fluorescence spectroscopy, Na(32PJ– 32S1/2). Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 1619-1631.	1.1	11
398	Kinetic studies of the reactions of OH(X2Î) with hydrogen chloride and deuterium chloride at elevated temperatures by time-resolved resonance fluorescence (A2â"+–X2Î). Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 713-728.	1.1	30
399	Kinetic investigation of the reaction between Na + O2+ M by time-resolved atomic resonance absorption spectroscopy. Journal of the Chemical Society, Faraday Transactions 2, 1982, 78, 163.	1.1	58
400	Kinetic investigation of the third-order rate processes between K + O2+ M by time-resolved atomic resonance absorption spectroscopy. Journal of the Chemical Society, Faraday Transactions 2, 1982, 78, 1175.	1.1	21
401	Kinetic investigation of the reactions of OH(X2Î) with the hydrogen halides, HCl, DCl, HBr and DBr by time-resolved resonance fluorescence (A2â~+–X2Î). Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 1949-1962.	1.1	54
402	Comment on "A cometary origin for atmospheric martian methane―by Fries et al., 2016. Geochemical Perspectives Letters, 0, , .	1.0	4
403	Master equation modelling of non-equilibrium chemistry in stellar outflows. Faraday Discussions, 0, 238, 461-474.	1.6	4