
Zhijiang Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8927746/publications.pdf Version: 2024-02-01

ZHULANC YE

#	Article	IF	CITATIONS
1	Prediction of Nanoscale Friction for Two-Dimensional Materials Using a Machine Learning Approach. Tribology Letters, 2020, 68, 1.	2.6	80
2	Dynamics of Atomic Stick-Slip Friction Examined with Atomic Force Microscopy and Atomistic Simulations at Overlapping Speeds. Physical Review Letters, 2015, 114, 146102.	7.8	78
3	Environmental dependence of atomic-scale friction at graphite surface steps. Physical Review B, 2013, 88, .	3.2	69
4	Shear-Induced Mechanochemistry: Pushing Molecules Around. Journal of Physical Chemistry C, 2015, 119, 7115-7123.	3.1	65
5	Correlation Between Probe Shape and Atomic Friction Peaks at Graphite Step Edges. Tribology Letters, 2013, 50, 49-57.	2.6	47
6	Effect of roughness on the layer-dependent friction of few-layer graphene. Physical Review B, 2017, 96,	3.2	46
7	Dual-dynamic interpenetrated networks tuned through macromolecular architecture. Polymer Chemistry, 2019, 10, 6290-6304.	3.9	40
8	Atomic friction at exposed and buried graphite step edges: Experiments and simulations. Applied Physics Letters, 2015, 106, .	3.3	35
9	Atomistic Simulation of the Load Dependence of Nanoscale Friction on Suspended and Supported Graphene. Langmuir, 2014, 30, 14707-14711.	3.5	33
10	Accelerating dynamic exchange and self-healing using mechanical forces in crosslinked polymers. Materials Horizons, 2020, 7, 1581-1587.	12.2	32
11	Effect of tip shape on atomic-friction at graphite step edges. Applied Physics Letters, 2013, 103, 081601.	3.3	30
12	Experiments and simulations of the humidity dependence of friction between nanoasperities and graphite: The role of interfacial contact quality. Physical Review Materials, 2018, 2, .	2.4	30
13	Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide. Nanotechnology, 2015, 26, 165701.	2.6	18
14	Wavelength-Controlled Synthesis and Degradation of Thermoplastic Elastomers Based on Intrinsically Photoresponsive Phenyl Vinyl Ketone. Macromolecules, 2020, 53, 5199-5207.	4.8	18
15	Computational Investigation of the Effect of Network Architecture on Mechanical Properties of Dynamically Crossâ€Linked Polymer Materials. Macromolecular Theory and Simulations, 2019, 28, 1900008.	1.4	17
16	Tuning Dual-Dynamic Network Materials through Polymer Architectural Features. ACS Applied Polymer Materials, 2022, 4, 1475-1486.	4.4	17
17	Nanoscale Colocalized Electrochemical and Structural Mapping of Metal Dissolution Reaction. Analytical Chemistry, 2022, 94, 9058-9064.	6.5	15
18	Structural and Chemical Evolution of the Near-Apex Region of an Atomic Force Microscope Tip Subject to Sliding. Tribology Letters, 2014, 53, 181-187.	2.6	12

Zhijiang Ye

#	Article	IF	CITATIONS
19	Carbon nanotube enhanced dynamic polymeric materials through macromolecular engineering. Materials Advances, 2020, 1, 1071-1076.	5.4	11
20	The Role of Speed in Atomic Scale Wear. Journal of Physical Chemistry C, 2021, 125, 4139-4145.	3.1	5
21	Effect of structural transitions of n-hexadecane in nanoscale confinement on atomic friction. Carbon, 2021, 183, 428-437.	10.3	4
22	The role of roughness-induced damping in the oscillatory motion of bilayer graphene. Nanotechnology, 2014, 25, 425703.	2.6	2