

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8927315/publications.pdf Version: 2024-02-01

YI CHEN

#	Article	IF	CITATIONS
1	The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environmental Earth Sciences, 2009, 59, 811-820.	2.7	74
2	Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of southwest China. Hydrological Processes, 2011, 25, 2456-2470.	2.6	60
3	Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach. Hydrological Processes, 2018, 32, 2932-2946.	2.6	58
4	Storage dynamics, hydrological connectivity and flux ages in a karst catchment: conceptual modelling using stable isotopes. Hydrology and Earth System Sciences, 2019, 23, 51-71.	4.9	51
5	Effect of catchment properties on runoff coefficient in a karst area of southwest China. Hydrological Processes, 2014, 28, 3691-3702.	2.6	49
6	Spatial distribution and temporal trends in daily and monthly precipitation concentration indices in the upper reaches of the Huai River, China. Stochastic Environmental Research and Risk Assessment, 2014, 28, 201-212.	4.0	48
7	Evolution of hydrological drought under the regulation of two reservoirs in the headwater basin of the Huaihe River, China. Stochastic Environmental Research and Risk Assessment, 2015, 29, 487-499.	4.0	45
8	Catchmentâ€scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrological Processes, 2017, 31, 3421-3436.	2.6	44
9	Environmental Groundwater Depth for Groundwater-Dependent Terrestrial Ecosystems in Arid/Semiarid Regions: A Review. International Journal of Environmental Research and Public Health, 2019, 16, 763.	2.6	43
10	Hydrologic Evaluation of TRMM and GPM IMERG Satellite-based Precipitation in a Humid Basin of China. Remote Sensing, 2019, 11, 431.	4.0	42
11	lsotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China. Hydrological Processes, 2011, 25, 3666-3675.	2.6	41
12	A framework to assess the impact of ecological water conveyance on groundwater-dependent terrestrial ecosystems in arid inland river basins. Science of the Total Environment, 2020, 709, 136155.	8.0	41
13	Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sensing, 2019, 11, 1451.	4.0	38
14	Quantifying time lag of epikarst-spring hydrograph response to rainfall using correlation and spectral analyses. Hydrogeology Journal, 2013, 21, 1619-1631.	2.1	33
15	Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Science of the Total Environment, 2020, 709, 136163.	8.0	32
16	Quantifying Influences of Natural and Anthropogenic Factors on Vegetation Changes Based on Geodetector: A Case Study in the Poyang Lake Basin, China. Remote Sensing, 2021, 13, 5081.	4.0	32
17	Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products in the Yangtze River Basin, China. Water (Switzerland), 2019, 11, 1459.	2.7	30
18	Assessing the Ecological Effects of Water Transport to a Lake in Arid Regions: A Case Study of Qingtu Lake in Shiyang River Basin, Northwest China. International Journal of Environmental Research and Public Health, 2019, 16, 145.	2.6	30

XI CHEN

#	Article	IF	CITATIONS
19	Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge. Science of the Total Environment, 2021, 759, 143510.	8.0	25
20	Water infiltration underneath single-ring permeameters and hydraulic conductivity determination. Journal of Hydrology, 2011, 398, 135-143.	5.4	24
21	Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1641-1657.	4.0	24
22	Vegetation Response to Groundwater Variation in Arid Environments: Visualization of Research Evolution, Synthesis of Response Types, and Estimation of Groundwater Threshold. International Journal of Environmental Research and Public Health, 2019, 16, 1849.	2.6	24
23	Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River. Hydrology and Earth System Sciences, 2020, 24, 1145-1157.	4.9	24
24	Modifying SEBAL Model Based on the Trapezoidal Relationship between Land Surface Temperature and Vegetation Index for Actual Evapotranspiration Estimation. Remote Sensing, 2014, 6, 5909-5937.	4.0	23
25	Modeling oasis dynamics driven by ecological water diversion and implications for oasis restoration in arid endorheic basins. Journal of Hydrology, 2021, 593, 125774.	5.4	21
26	Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,228.	3.3	20
27	An Improved Optimization Scheme for Representing Hillslopes and Depressions in Karst Hydrology. Water Resources Research, 2020, 56, e2019WR026038.	4.2	18
28	Assessing the impact of human activities on hydrological and sediment changes (1953–2000) in nine major catchments of the Loess Plateau, China. River Research and Applications, 2010, 26, 322-340.	1.7	16
29	Analysis of hydrogeological parameters and numerical modeling groundwater in a karst watershed, southwest China. Carbonates and Evaporites, 2013, 28, 89-94.	1.0	16
30	Changes of Precipitationâ€Runoff Relationship Induced by Climate Variation in a Large Glaciated Basin of the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034367.	3.3	16
31	Changes of Grassland Rain Use Efficiency and NDVI in Northwestern China from 1982 to 2013 and Its Response to Climate Change. Water (Switzerland), 2018, 10, 1689.	2.7	15
32	Assessing environmental water requirement for groundwater-dependent vegetation in arid inland basins by combining the copula joint distribution function and the dual objective optimization: An application to the Turpan Basin, China. Science of the Total Environment, 2021, 799, 149323.	8.0	15
33	Numerical modeling the role of rubber dams on groundwater recharge and phreatic evaporation loss in riparian zones. Environmental Earth Sciences, 2012, 65, 345-352.	2.7	13
34	Simulating the integrated effects of topography and soil properties on runoff generation in hilly forested catchments, South China. Hydrological Processes, 2010, 24, 714-725.	2.6	12
35	Integrating Topography and Soil Properties for Spatial Soil Moisture Storage Modeling. Water (Switzerland), 2017, 9, 647.	2.7	11
36	The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities?. Forests, 2022, 13, 82.	2.1	11

XI CHEN

#	Article	IF	CITATIONS
37	Regionalization of annual runoff characteristics and its indication of co-dependence among hydro-climate–landscape factors in Jinghe River Basin, China. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1613-1630.	4.0	10
38	Evaluating the joint use of GPR and ERT on mapping shallow subsurface features of karst critical zone in southwest China. Vadose Zone Journal, 2022, 21, e20172.	2.2	9
39	How can streamflow and climate-landscape data be used to estimate baseflow mean response time?. Journal of Hydrology, 2018, 557, 916-930.	5.4	8
40	Spatiotemporal Evolution of Droughts and Their Teleconnections with Large-Scale Climate Indices over Guizhou Province in Southwest China. Water (Switzerland), 2019, 11, 2104.	2.7	8
41	Using hysteretic behaviour and hydrograph classification to identify hydrological function across the "hillslope–depression–stream―continuum in a karst catchment. Hydrological Processes, 2020, 34, 3464-3480.	2.6	8
42	Influences of climate variation on thawing?freezing processes in the northeast of Three-River Source Region China. Cold Regions Science and Technology, 2013, 86, 86-97.	3.5	6
43	A Multi-Dimensional Hydro-Climatic Similarity and Classification Framework Based on Budyko Theory for Continental-Scale Applications in China. Water (Switzerland), 2019, 11, 319.	2.7	5
44	Changes in water use efficiency and their relations to climate change and human activities in three forestry regions of China. Theoretical and Applied Climatology, 2021, 144, 1297-1310.	2.8	5
45	Improved Inverse Modeling by Separating Model Structural and Observational Errors. Water (Switzerland), 2018, 10, 1151.	2.7	4
46	Changes in vegetation and surface water balance at basin-scale in Central China with rising atmospheric CO2. Climatic Change, 2019, 155, 437-454.	3.6	4
47	Dissolved inorganic carbon isotopes of a typical alpine river on the Tibetan Plateau revealing carbon sources, wetland effect and river recharge. Hydrological Processes, 2021, 35, e14402.	2.6	4
48	Role of hydro-geochemical functions on karst critical zone hydrology for sustainability of water resources and ecology in Southwest China. Acta Geochimica, 2017, 36, 494-497.	1.7	3
49	Characterization of the Coherence Between Soil Moisture and Precipitation at Regional Scales. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034340.	3.3	3
50	Temporal change of spatial heterogeneity and its effect on regional trend of annual precipitation heterogeneity indices. Hydrological Processes, 2017, 31, 3178-3190.	2.6	2
51	Hydro-stochastic interpolation coupling with the Budyko approach for prediction of mean annual runoff. Hydrology and Earth System Sciences, 2018, 22, 2891-2901.	4.9	2
52	The Use of River Flow Discharge and Sediment Load for Multi-Objective Calibration of SWAT Based on the Bayesian Inference. Water (Switzerland), 2018, 10, 1662.	2.7	1
53	A generalized probability distribution of annual discharge derived from correlation dimension analysis in six main basins of China. Stochastic Environmental Research and Risk Assessment, 2020, 34, 2071-2082.	4.0	1
54	Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and Groundwater Depth in an Agricultural Area of Huaihe River Basin, China. Water (Switzerland), 2021, 13, 2220.	2.7	0