Hayder I Mohammed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8927236/publications.pdf

Version: 2024-02-01

304743 330143 39 1,402 22 37 citations h-index g-index papers 39 39 39 626 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system. Applied Energy, 2020, 257, 113993.	10.1	219
2	Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system. Energy, 2020, 193, 116800.	8.8	127
3	Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source. Energy, 2019, 189, 116108.	8.8	123
4	A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Solar Energy, 2021, 222, 160-174.	6.1	73
5	Performance evaluation of melting/solidification mechanism in a variable wave-length wavy channel double-tube latent heat storage system. Journal of Energy Storage, 2020, 27, 101063.	8.1	61
6	An experimental investigation on the rheological behavior of nanofluids made by suspending multi-walled carbon nanotubes in liquid paraffin. Journal of Molecular Liquids, 2020, 300, 112269.	4.9	44
7	Consecutive charging and discharging of a PCM-based plate heat exchanger with zigzag configuration. Applied Thermal Engineering, 2021, 193, 116970.	6.0	42
8	Improved melting of latent heat storage via porous medium and uniform Joule heat generation. Journal of Energy Storage, 2020, 31, 101747.	8.1	40
9	CFD simulation of a concentrated salt nanofluid flow boiling in a rectangular tube. International Journal of Heat and Mass Transfer, 2018, 125, 218-228.	4.8	39
10	Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System. Energies, 2021, 14, 1619.	3.1	39
11	Intensifying the thermal response of PCM via fin-assisted foam strips in the shell-and-tube heat storage system. Journal of Energy Storage, 2022, 45, 103733.	8.1	39
12	Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam. Applied Thermal Engineering, 2021, 197, 117408.	6.0	38
13	Effects of non-uniform fin arrangement and size on the thermal response of a vertical latent heat triple-tube heat exchanger. Journal of Energy Storage, 2022, 45, 103723.	8.1	36
14	Multiphase flow and boiling heat transfer modelling of nanofluids in horizontal tubes embedded in a metal foam. International Journal of Thermal Sciences, 2019, 146, 106099.	4.9	35
15	Effect of airflow channel arrangement on the discharge of a composite metal foamâ€phase change material heat exchanger. International Journal of Energy Research, 2021, 45, 2593-2609.	4.5	35
16	Numerical study of circular-elliptical double-pipe thermal energy storage systems. Journal of Energy Storage, 2020, 30, 101440.	8.1	34
17	Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements. Nanomaterials, 2021, 11, 2647.	4.1	32
18	CFD multiphase modelling of the acetone condensation and evaporation process in a horizontal circular tube. International Journal of Heat and Mass Transfer, 2019, 134, 1159-1170.	4.8	28

#	Article	IF	CITATIONS
19	Melting Enhancement in a Triple-Tube Latent Heat Storage System with Sloped Fins. Nanomaterials, 2021, 11, 3153.	4.1	28
20	Improved Melting of Latent Heat Storage Using Fin Arrays with Non-Uniform Dimensions and Distinct Patterns. Nanomaterials, 2022, 12, 403.	4.1	28
21	Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins. Energies, 2021, 14, 7179.	3.1	23
22	Localized heating element distribution in composite metal foamâ€phase change material: Fourier's law and creeping flow effects. International Journal of Energy Research, 2021, 45, 13380-13396.	4.5	22
23	Evaluation of Multiple Semi-Twisted Tape Inserts in a Heat Exchanger Pipe Using Al2O3 Nanofluid. Nanomaterials, 2021, 11, 1570.	4.1	22
24	Optimum design of a double elliptical latent heat energy storage system during the melting process. Journal of Energy Storage, 2021, 44, 103384.	8.1	22
25	Experimental investigation of nanoparticles concentration, boiler temperature and flow rate on flow boiling of zinc bromide and acetone solution in a rectangular duct. International Journal of Heat and Mass Transfer, 2019, 130, 710-721.	4.8	21
26	Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification. Molecules, 2020, 25, 4643.	3.8	19
27	Discharge improvement of a phase change materialâ€airâ€based thermal energy storage unit for space heating applications using metal foams in the air sides. Heat Transfer, 2022, 51, 3830-3852.	3.0	17
28	Solidification of a nano-enhanced phase change material (NePCM) in a double elliptical latent heat storage unit with wavy inner tubes. Solar Energy, 2022, 241, 39-53.	6.1	16
29	A new design to enhance the conductive and convective heat transfer of latent heat thermal energy storage units. Applied Thermal Engineering, 2022, 215, 118955.	6.0	14
30	Thermal behaviour of the flow boiling of a complex nanofluid in a rectangular channel: An experimental and numerical study. International Communications in Heat and Mass Transfer, 2020, 117, 104773.	5.6	13
31	CFD assessment of the effect of nanoparticles on the heat transfer properties of acetone/ZnBr2 solution. Applied Thermal Engineering, 2018, 128, 264-273.	6.0	12
32	Heat transfer of large Prandtl number fluids in porous media by a new lattice Boltzmann model. International Communications in Heat and Mass Transfer, 2021, 122, 105129.	5.6	11
33	Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage. Materials, 2021, 14, 1232.	2.9	10
34	Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes. Nanomaterials, 2021, 11, 3211.	4.1	10
35	Impact of Tube Bundle Placement on the Thermal Charging of a Latent Heat Storage Unit. Energies, 2021, 14, 1289.	3.1	9
36	Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes' Arrangement. Energies, 2021, 14, 7489.	3.1	9

#	Article	IF	CITATIONS
37	Thermo-physical properties of the nano-binary fluid (acetone–zinc bromide-ZnO) as a low temperature operating fluid for use in an absorption refrigeration machine. Heat and Mass Transfer, 2020, 56, 1037-1044.	2.1	7
38	Natural Convection Heat and Mass Transfer in the Vertical Cylindrical Porous Channel Under the Effects of Time-Periodic Boundary Condition. Journal of Heat Transfer, 2019, 141, .	2.1	4
39	CFD multiphase modelling for the nanofluid boiling of the salt solution in a symmetric rectangular boiler. , 2017, , .		1