Zheng-Bao Zha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926812/publications.pdf

Version: 2024-02-01

			109264	1	10317	
	73	4,272	35		64	
	papers	citations	h-index		g-index	
,						1
	76	76	76		5431	
	all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Uniform Polypyrrole Nanoparticles with High Photothermal Conversion Efficiency for Photothermal Ablation of Cancer Cells. Advanced Materials, 2013, 25, 777-782.	11.1	683
2	Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteriaâ€infected wound therapy. Bioactive Materials, 2021, 6, 4389-4401.	8.6	194
3	Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale, 2013, 5, 4462.	2.8	189
4	Enzyme-responsive copper sulphide nanoparticles for combined photoacoustic imaging, tumor-selective chemotherapy and photothermal therapy. Chemical Communications, 2013, 49, 3455.	2.2	160
5	Thermoresponsive <i>in Situ</i> Forming Hydrogel with Sol–Gel Irreversibility for Effective Methicillin-Resistant <i>Staphylococcus aureus</i> Infected Wound Healing. ACS Nano, 2019, 13, 10074-10084.	7.3	160
6	Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials, 2014, 35, 5795-5804.	5.7	129
7	Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases. Nano Letters, 2020, 20, 3079-3089.	4.5	121
8	Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light. Applied Catalysis B: Environmental, 2018, 224, 854-862.	10.8	105
9	Bi2S3 coated Au nanorods for enhanced photodynamic and photothermal antibacterial activities under NIR light. Chemical Engineering Journal, 2020, 397, 125488.	6.6	104
10	Interfacially Engineered Zn _{<i>x</i>} Mn _{1–<i>x</i>} S@Polydopamine Hollow Nanospheres for Glutathione Depleting Photothermally Enhanced Chemodynamic Therapy. ACS Nano, 2021, 15, 11428-11440.	7.3	100
11	Biodegradable Nickel Disulfide Nanozymes with GSH-Depleting Function for High-Efficiency Photothermal-Catalytic Antibacterial Therapy. IScience, 2020, 23, 101281.	1.9	98
12	Ag Nanoparticles Cluster with pH‶riggered Reassembly in Targeting Antimicrobial Applications. Advanced Functional Materials, 2020, 30, 2000511.	7.8	98
13	Rod-based urchin-like hollow microspheres of Bi2S3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation. Biomaterials, 2020, 237, 119835.	5.7	95
14	Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale, 2013, 5, 3216.	2.8	93
15	One-pot solution synthesis of shape-controlled copper selenide nanostructures and their potential applications in photocatalysis and photothermal therapy. Nanoscale, 2017, 9, 14512-14519.	2.8	83
16	Scalable fabrication of ZnxCd1-xS double-shell hollow nanospheres for highly efficient hydrogen production. Applied Catalysis B: Environmental, 2018, 239, 309-316.	10.8	82
17	Ultrastable AgBiS ₂ Hollow Nanospheres with Cancer Cell-Specific Cytotoxicity for Multimodal Tumor Therapy. ACS Nano, 2020, 14, 14919-14928.	7.3	77
18	Folin–Ciocalteu Assay Inspired Polyoxometalate Nanoclusters as a Renal Clearable Agent for Non-Inflammatory Photothermal Cancer Therapy. ACS Nano, 2020, 14, 2126-2136.	7.3	75

#	Article	IF	CITATIONS
19	Polypyrrole Hollow Microspheres as Echogenic Photothermal Agent for Ultrasound Imaging Guided Tumor Ablation. Scientific Reports, 2013, 3, 2360.	1.6	74
20	Precisely photothermal controlled releasing of antibacterial agent from Bi2S3 hollow microspheres triggered by NIR light for water sterilization. Chemical Engineering Journal, 2020, 381, 122630.	6.6	74
21	Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy. Nano Today, 2022, 43, 101380.	6.2	70
22	Multifunctional phase-change hollow mesoporous Prussian blue nanoparticles as a NIR light responsive drug co-delivery system to overcome cancer therapeutic resistance. Journal of Materials Chemistry B, 2017, 5, 7051-7058.	2.9	64
23	Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers, 2012, 97, 1026-1036.	1.2	63
24	Construction of ZnxCd1â^xs/Bi2S3 composite nanospheres with photothermal effect for enhanced photocatalytic activities. Journal of Colloid and Interface Science, 2019, 546, 303-311.	5.0	56
25	Anti-inflammatory catecholic chitosan hydrogel for rapid surgical trauma healing and subsequent prevention of tumor recurrence. Chinese Chemical Letters, 2020, 31, 1807-1811.	4.8	56
26	Charge reversal induced colloidal hydrogel acts as a multi-stimuli responsive drug delivery platform for synergistic cancer therapy. Materials Horizons, 2019, 6, 711-716.	6.4	55
27	Ambient Aqueous Synthesis of Ultrasmall Ni _{0.85} Se Nanoparticles for Noninvasive Photoacoustic Imaging and Combined Photothermal-Chemotherapy of Cancer. ACS Applied Materials & amp; Interfaces, 2017, 9, 41782-41793.	4.0	54
28	Engineering of perfluorooctylbromide polypyrrole nano-/microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer. Biomaterials, 2014, 35, 287-293.	5.7	53
29	Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy. Applied Materials Today, 2020, 18, 100464.	2.3	51
30	Enzyme-Responsive Ag Nanoparticle Assemblies in Targeting Antibacterial against Methicillin-Resistant <i>Staphylococcus Aureus</i> . ACS Applied Materials & Staphylococcus (12, 4333-4342).	4.0	50
31	PEGylated rhenium nanoclusters: a degradable metal photothermal nanoagent for cancer therapy. Chemical Science, 2019, 10, 5435-5443.	3.7	49
32	Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment. Colloids and Surfaces B: Biointerfaces, 2017, 152, 449-458.	2.5	46
33	Gadolinium-chelate functionalized copper sulphide as a nanotheranostic agent for MR imaging and photothermal destruction of cancer cells. Chemical Communications, 2013, 49, 6776.	2.2	45
34	Controlled synthesis of upconverting nanoparticles/CuS yolk–shell nanoparticles for <i>in vitro</i> synergistic photothermal and photodynamic therapy of cancer cells. Journal of Materials Chemistry B, 2017, 5, 9487-9496.	2.9	44
35	Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined photothermal-chemo treatment of cancer. RSC Advances, 2017, 7, 248-255.	1.7	44
36	Controlled CRISPRâ€Cas9 Ribonucleoprotein Delivery for Sensitized Photothermal Therapy. Small, 2021, 17, e2101155.	5.2	41

#	Article	IF	Citations
37	Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Talanta, 2020, 207, 120261.	2.9	37
38	A chloroquine-loaded Prussian blue platform with controllable autophagy inhibition for enhanced photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 5854-5859.	2.9	33
39	Liquid Exfoliation of Atomically Thin Antimony Selenide as an Efficient Two-Dimensional Antibacterial Nanoagent. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26664-26673.	4.0	33
40	Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic efficiency for overcoming tumor hypoxia. Biomaterials Science, 2020, 8, 4157-4165.	2.6	31
41	Organic–inorganic nanovesicles for doxorubicin storage and release. Soft Matter, 2012, 8, 5756.	1.2	28
42	Nanofibrous Lipid Membranes Capable of Functionally Immobilizing Antibodies and Capturing Specific Cells. Advanced Materials, 2011, 23, 3435-3440.	11.1	27
43	PEGylated Tantalum Nanoparticles: A Metallic Photoacoustic Contrast Agent for Multiwavelength Imaging of Tumors. Small, 2019, 15, e1903596.	5. 2	27
44	Cell membrane-coated nanoparticles for immunotherapy. Chinese Chemical Letters, 2022, 33, 1673-1680.	4.8	27
45	Phototherapy Using a Fluoroquinolone Antibiotic Drug to Suppress Tumor Migration and Proliferation and to Enhance Apoptosis. ACS Nano, 2022, 16, 4917-4929.	7.3	27
46	Polyoxometalate nanoclusters: A potential preventative and therapeutic drug for inflammatory bowel disease. Chemical Engineering Journal, 2021, 416, 129137.	6.6	25
47	Facile Synthesis of Upconverting Nanoparticles/Zinc Oxide Core–Shell Nanostructures with Large Lattice Mismatch for Infrared Triggered Photocatalysis. Particle and Particle Systems Characterization, 2017, 34, 1600222.	1.2	24
48	Safeâ€byâ€Design Exfoliation of Niobium Diselenide Atomic Crystals as a Theoryâ€Oriented 2D Nanoagent from Antiâ€Inflammation to Antitumor. Advanced Functional Materials, 2020, 30, 2001593.	7.8	23
49	Mesoporous NiS ₂ nanospheres as a hydrophobic anticancer drug delivery vehicle for synergistic photothermal–chemotherapy. Journal of Materials Chemistry B, 2019, 7, 143-149.	2.9	22
50	Fluorescent carbon dots with excellent moisture retention capability for moisturizing lipstick. Journal of Nanobiotechnology, 2021, 19, 299.	4.2	22
51	Inhibition of oxidative stress in vivo through enzyme-like activity of carbon dots. Applied Materials Today, 2021, 25, 101178.	2.3	22
52	Polyacrylic Acid Functionalized Co _{0.85} Se Nanoparticles: An Ultrasmall pH-Responsive Nanocarrier for Synergistic Photothermal-Chemo Treatment of Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 547-557.	2.6	21
53	Self-assembled hemocompatible coating on poly (vinyl chloride) surface. Applied Surface Science, 2009, 256, 805-814.	3.1	20
54	Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics. Science Bulletin, 2021, 66, 147-157.	4.3	17

#	Article	IF	CITATIONS
55	A tumour microenvironment-mediated Bi _{2â^'<i>x</i>} Mn _{<i>x</i>} O ₃ hollow nanospheres <i>via</i> glutathione depletion for photothermal enhanced chemodynamic collaborative therapy. Journal of Materials Chemistry B, 2022, 10, 3452-3461.	2.9	17
56	<scp>dl</scp> -Menthol Loaded Polypyrrole Nanoparticles as a Controlled Diclofenac Delivery Platform for Sensitizing Cancer Cells to Photothermal Therapy. ACS Applied Bio Materials, 2019, 2, 848-855.	2.3	15
57	Anti-EGFR antibody conjugated organic–inorganic hybrid lipid nanovesicles selectively target tumor cells. Colloids and Surfaces B: Biointerfaces, 2014, 121, 141-149.	2.5	14
58	Thermochromic Polyvinyl Alcohol″odine Hydrogels with Safe Threshold Temperature for Infectious Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100722.	3.9	14
59	PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy (i>via ATM deficiency-triggered chemosensitization. Materials Horizons, 2021, 8, 2216-2229.	6.4	12
60	Cryo-assisted exfoliation of atomically thin 2D Sb ₂ Se ₃ nanosheets for photo-induced theranostics. Chemical Communications, 2019, 55, 2805-2808.	2.2	11
61	Biodistribution of etoposide via intratumoral chemotherapy with etoposide-loaded implants. Drug Delivery, 2020, 27, 974-982.	2.5	11
62	PEGylated Indium Nanoparticles: A Metallic Contrast Agent for Multiwavelength Photoacoustic Imaging and Second Near-Infrared Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46343-46352.	4.0	11
63	Synthesis of CoSnS ₂ hollow nanocubes with NIR-enhanced chemodynamic therapy and glutathione depletion for combined cancer therapy. Materials Chemistry Frontiers, 2022, 6, 1522-1532.	3.2	11
64	A biomimetic mechanism for antibody immobilization on lipid nanofibers for cell capture. Applied Physics Letters, 2012, 101, 193701.	1.5	10
65	Facile synthesis of monodisperse chromogenic amylose–iodine nanoparticles as an efficient broad-spectrum antibacterial agent. Journal of Materials Chemistry B, 2020, 8, 3010-3015.	2.9	8
66	Cryptobiosis-inspired assembly of "AND―logic gate platform for potential tumor-specific drug delivery. Acta Pharmaceutica Sinica B, 2021, 11, 534-543.	5.7	8
67	Ultrasound lighting up AlEgens for potential surgical navigation. Journal of Materials Chemistry B, 2021, 9, 3317-3325.	2.9	6
68	Activation of Cascadeâ€Like Antitumor Immune Responses through In Situ Doxorubicin Stimulation and Blockade of Checkpoint Coinhibitory Receptor TIGIT. Advanced Healthcare Materials, 2022, 11, e2102080.	3.9	5
69	Comparative study of antibody immobilization mediated by lipid and polymer fibers. Colloids and Surfaces B: Biointerfaces, 2015, 134, 1-7.	2.5	4
70	Facile Synthesis of Thermo-Sensitive Composite Hydrogel with Well Dispersed Ag Nanoparticles for Application in Superior Antibacterial Infections. Journal of Biomedical Nanotechnology, 2021, 17, 1148-1159.	0.5	4
71	Emerging 2D pnictogens for biomedical applications. Chinese Chemical Letters, 2022, 33, 2345-2353.	4.8	3
72	Three birds with one stone: co-encapsulation of diclofenac and DL-menthol for realizing enhanced energy deposition, glycolysis inhibition and anti-inflammation in HIFU surgery. Journal of Nanobiotechnology, 2022, 20, 215.	4.2	2

#	Article	lF	CITATIONS
73	Ratiometric fluorescent nanoprobe for imaging and screening of hydrogen sulfide related bacterial resistance. Materials Today Communications, 2022, 32, 103959.	0.9	0