
Xi-Jing Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926711/publications.pdf Version: 2024-02-01

XI-LING NING

#	Article	IF	CITATIONS
1	Photovoltaic Self-Powered Gas Sensing: A Review. IEEE Sensors Journal, 2021, 21, 5628-5644.	4.7	29
2	Which phase of Ta ₂ O ₅ being of the largest dielectric constant. Journal of the American Ceramic Society, 2021, 104, 6413-6423.	3.8	6
3	Light-optimized photovoltaic self-powered NO2 gas sensing based on black silicon. Sensors and Actuators B: Chemical, 2021, 340, 129985.	7.8	12
4	How accurate for phonon models to predict the thermodynamics properties of crystals. Journal of Physics Condensed Matter, 2021, 33, 085901.	1.8	6
5	Efficient approaches to solutions of partition function for condensed matters. Journal of Physics Condensed Matter, 2021, 33, 115901.	1.8	4
6	Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF ₆ /NF ₃ atmosphere. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 730.	2.1	8
7	A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate. Nanomaterials, 2019, 9, 978.	4.1	10
8	Rapid and Wide-Range Detection of NO <i>_x</i> Gas by N-Hyperdoped Silicon with the Assistance of a Photovoltaic Self-Powered Sensing Mode. ACS Sensors, 2019, 4, 3056-3065.	7.8	19
9	Charge-Transfer-Induced Interfacial Exchange Coupling at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Co</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mib bi<="" mml<br="">mathvariant="normal">O</mml:mib></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math 	:mi> 318 ml:r	ni>Fe
10	What retards the response of graphene based gaseous sensor. Sensors and Actuators A: Physical, 2019, 295, 188-192.	4.1	3
11	Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon. Sensors and Actuators B: Chemical, 2019, 291, 345-353.	7.8	25
12	Comparison of Two Efficient Methods for Calculating Partition Functions. Entropy, 2019, 21, 1050.	2.2	7
13	Atomistic mechanism for graphene based gaseous sensor working. Applied Surface Science, 2019, 470, 448-453.	6.1	12
14	Stripe domains in epitaxial BiFeO3 thin films on (100) SrTiO3 substrates. Journal of Applied Physics, 2018, 123, 044102.	2.5	8
15	"Infinite Sensitivity―of Black Silicon Ammonia Sensor Achieved by Optical and Electric Dual Drives. ACS Applied Materials & Interfaces, 2018, 10, 5061-5071.	8.0	27
16	Migrating and clustering of He atoms in Ti3SiC2: First-principles calculations. Computational Materials Science, 2017, 137, 327-331.	3.0	9
17	Conductivity of graphene affected by metal adatoms. AIP Advances, 2017, 7, .	1.3	6
18	The effects of He clusters on the mechanical properties of Ti ₃ AC ₂ (A = Ge, Si): first-principles studies. RSC Advances, 2017, 7, 48437-48443.	3.6	4

XI-JING NING

#	Article	IF	CITATIONS
19	A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials. Chinese Physics B, 2017, 26, 126601.	1.4	0
20	A Scheme for the Growth of Graphene Sheets Embedded with Nanocones. Crystals, 2017, 7, 35.	2.2	2
21	Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon. Scientific Reports, 2015, 5, 10513.	3.3	31
22	Al-doping influence on crystal growth of Ni–Al alloy: Experimental testing of a theoretical model. Chinese Physics B, 2015, 24, 128706.	1.4	1
23	A universal function of creep rate. Chinese Physics B, 2015, 24, 093401.	1.4	1
24	Tuning the electronic and optical properties of monatomic carbon chains. Carbon, 2014, 68, 487-492.	10.3	14
25	A statistical model for predicting thermal chemical reaction rate. Chinese Physics B, 2014, 23, 050501.	1.4	2
26	Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation. Nanoscale Research Letters, 2014, 9, 235.	5.7	2
27	Mass dependence of the Soret coefficient for atomic diffusion in condensed matter. Physical Review E, 2013, 87, 062311.	2.1	7
28	Tuning the conductance of monatomic carbon chain. Journal of Applied Physics, 2013, 114, 154309.	2.5	5
29	Simple statistical model for predicting thermal atom diffusion on crystal surfaces. Chinese Physics B, 2013, 22, 116802.	1.4	1
30	Reliable Lateral Atom Manipulation by Thermal Activation on Metal fcc(001) Surfaces. Journal of the Physical Society of Japan, 2013, 82, 104602.	1.6	0
31	Electronic rectification devices from carbon nanocones. Applied Physics Letters, 2012, 100, 063119.	3.3	9
32	A scheme for fabricating single wall carbon nanocones standing on metal surfaces and an evaluation of their stability. Carbon, 2012, 50, 2651-2656.	10.3	15
33	Doping influence on the ability to form single crystals. Chemical Physics Letters, 2011, 501, 330-334.	2.6	1
34	Photoluminescence responses of Si nanocrystal to differing pumping conditions. Journal of Applied Physics, 2011, 110, 013502.	2.5	11
35	MOLECULAR DYNAMICS SIMULATION OF PULSED LASER ABLATION. International Journal of Modern Physics B, 2011, 25, 543-550.	2.0	5
36	ISOMER SPECTRUM OF C30 CLUSTER AND THE GROWTH DYNAMICS. International Journal of Modern Physics B, 2010, 24, 1441-1448.	2.0	0

XI-JING NING

#	Article	IF	CITATIONS
37	Statistical model for small clusters transforming from one isomer to another. Journal of Chemical Physics, 2010, 132, 064103.	3.0	14
38	Shape prediction of two-dimensional adatom islands on crystal surfaces during homoepitaxial growth. Applied Physics Letters, 2009, 94, 183107.	3.3	13
39	Reversible atomic modification of nanostructures on surfaces using direction-depended tip-surface interaction with a trimer-apex tip. Applied Physics Letters, 2009, 95, 073105.	3.3	7
40	Evaluating the ability to form single crystal. Journal of Chemical Physics, 2009, 130, 164711.	3.0	14
41	Pulling long linear atomic chains from graphene: Molecular dynamics simulations. Physical Review B, 2009, 80, .	3.2	28
42	Global optimization method for cluster structures. Physical Review E, 2008, 78, 026708.	2.1	17
43	lsomers of C36 and free energy criteria for cluster growth. Journal of Chemical Physics, 2007, 126, 174309.	3.0	17
44	Preparation of long monatomic carbon chains: Molecular dynamics studies. Physical Review B, 2007, 76, .	3.2	27
45	C72 (or C120) cluster growth from C36 (or C60) clusters. Computational and Theoretical Chemistry, 2007, 807, 201-206.	1.5	3
46	Spectral properties of aV-type three-level atom driven by two bichromatic fields. Physical Review A, 2006, 74, .	2.5	16
47	Decay mechanism of double-layer islands on close-packed surfaces: Silver on Ag(111) and copper on Cu(111). Thin Solid Films, 2005, 493, 146-151.	1.8	6
48	ISOMERS OF COPPER CLUSTERS OBTAINED BY A MOLECULAR DYNAMICS MODEL. International Journal of Modern Physics B, 2005, 19, 2359-2364.	2.0	1
49	Evolution spectrum of C[sub 60] isomers in buffer gas. Journal of Chemical Physics, 2004, 121, 7701.	3.0	12
50	lsomer abundance of small carbon clusters formed in buffer He gas. Journal of Chemical Physics, 2004, 121, 2013-2015.	3.0	13
51	Diffusion and Aggregation of He Atoms Generated from T Decay in Cu Crystals*. Journal of the Physical Society of Japan, 2004, 73, 943-949.	1.6	1
52	Decay mechanism of double-layer Cu islands on Cu(111). Surface Science, 2004, 553, 181-188.	1.9	11
53	Matrix effects on the mobility of oxygen atoms in different states. Journal of Chemical Physics, 2001, 114, 9969-9974.	3.0	4
54	Mobility of oxygen atoms generated from photolysis of O3 isolated in argon matrices. Journal of Chemical Physics, 2000, 112, 386-395.	3.0	11

XI-JING NING

#	Article	IF	CITATIONS
55	Trapping site structures of O3 isolated in argon matrices. Journal of Chemical Physics, 1999, 111, 7047-7052.	3.0	10
56	A new molecular dynamics method for simulating trapping site structures in cryogenic matrices. Journal of Chemical Physics, 1999, 110, 4920-4928.	3.0	19
57	Molecular dynamics simulation of O3 photolysis by ultraviolet light in solid argon. Journal of Computational Chemistry, 1999, 20, 623-628.	3.3	Ο