
Tugba Bagci-Onder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Dual PI3K/mTOR Inhibitor, PI-103, Cooperates with Stem Cell–Delivered TRAIL in Experimental Glioma Models. Cancer Research, 2011, 71, 154-163.	0.4	94
2	Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16642-16647.	3.3	70
3	Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nature Cell Biology, 2022, 24, 554-564.	4.6	53
4	Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers, 2022, 14, 443.	1.7	48
5	Gelatin Methacryloyl Hydrogels in the Absence of a Crosslinker as 3D Glioblastoma Multiforme (GBM)â€Mimetic Microenvironment. Macromolecular Bioscience, 2018, 18, 1700369.	2.1	43
6	Identification of SERPINE1 as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling. Cancers, 2019, 11, 1651.	1.7	43
7	Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells. Brain, 2015, 138, 1710-1721.	3.7	38
8	IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications?. Biomedicines, 2021, 9, 799.	1.4	37
9	May iron(III) complexes containing phenanthroline derivatives as ligands be prospective anticancer agents?. European Journal of Medicinal Chemistry, 2019, 176, 492-512.	2.6	35
10	Epigenetic Deregulation of Apoptosis in Cancers. Cancers, 2021, 13, 3210.	1.7	29
11	Quinacrine Mediated Sensitization of Glioblastoma (GBM) Cells to TRAIL through MMP-Sensitive PEG Hydrogel Carriers. Macromolecular Bioscience, 2017, 17, 1600267.	2.1	28
12	Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene, 2020, 39, 2187-2201.	2.6	28
13	Identification of Mitoxantrone as a TRAIL-sensitizing agent for Glioblastoma Multiforme. Cancer Biology and Therapy, 2016, 17, 546-557.	1.5	27
14	KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL. Cell Death and Disease, 2017, 8, e2897-e2897.	2.7	26
15	The pro-apoptotic Bcl-2 family member Harakiri (HRK) induces cell death in glioblastoma multiforme. Cell Death Discovery, 2019, 5, 64.	2.0	26
16	The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma. Cell Death and Disease, 2019, 10, 894.	2.7	21
17	Glioma-on-a-Chip Models. Micromachines, 2021, 12, 490.	1.4	19
18	Evaluating the Effect of Therapeutic Stem Cells on TRAIL Resistant and Sensitive Medulloblastomas. PLoS ONE, 2012, 7, e49219.	1.1	18

TUGBA BAGCI-ONDER

#	Article	IF	CITATIONS
19	3D bioprinted glioma models. Progress in Biomedical Engineering, 2022, 4, 042001.	2.8	14
20	Parameters Influencing Gene Delivery Efficiency of PEGylated Chitosan Nanoparticles: Experimental and Modeling Approach. Advanced NanoBiomed Research, 2022, 2, 2100033.	1.7	12
21	TRAIL-conjugated silver nanoparticles sensitize glioblastoma cells to TRAIL by regulating CHK1 in the DNA repair pathway. Neurological Research, 2020, 42, 1061-1069.	0.6	10
22	Stem Cells Engineered During Different Stages of Reprogramming Reveal Varying Therapeutic Efficacies. Stem Cells, 2018, 36, 932-942.	1.4	7
23	Generation of TRAIL-resistant cell line models reveals distinct adaptive mechanisms for acquired resistance and re-sensitization. Oncogene, 2021, 40, 3201-3216.	2.6	5
24	Derivation of Neural Stem Cells from Mouse Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2015, 1357, 329-338.	0.4	3
25	A platinum blue complex exerts its cytotoxic activity via DNA damage and induces apoptosis in cancer cells. Chemical Biology and Drug Design, 2017, 90, 210-224.	1.5	3
26	Chronically Radiation-Exposed Survivor Glioblastoma Cells Display Poor Response to Chk1 Inhibition under Hypoxia. International Journal of Molecular Sciences, 2022, 23, 7051.	1.8	3
27	Experimental data on novel Fe(III)-complexes containing phenanthroline derivatives for their anticancer properties. Data in Brief, 2019, 27, 104548.	0.5	2
28	Macromol. Biosci. 2/2017. Macromolecular Bioscience, 2017, 17, .	2.1	1
29	Drug Repositioning Screen on a New Primary Cell Line Identifies Potent Therapeutics for Glioblastoma. Frontiers in Neuroscience, 2020, 14, 578316.	1.4	1