Huamin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Firefly Luciferase Complementation Imaging Assay for Protein-Protein Interactions in Plants. Plant Physiology, 2008, 146, 323-324.	2.3	989
2	ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 Repress <i>SALICYLIC ACID INDUCTION DEFICIENT2</i> Expression to Negatively Regulate Plant Innate Immunity in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2527-2540.	3.1	267
3	The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances, 2015, 1, e1500245.	4.7	209
4	The Arabidopsis Transcription Factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 Is a Direct Substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and Regulates Immunity. Plant Physiology, 2015, 167, 1076-1086.	2.3	87
5	A Novel Two-Component System PdeK/PdeR Regulates c-di-GMP Turnover and Virulence of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1361-1369.	1.4	78
6	Identification of phenolic compounds that suppress the virulence of <i>Xanthomonas oryzae</i> on rice via the type III secretion system. Molecular Plant Pathology, 2017, 18, 555-568.	2.0	67
7	The Degenerate EAL-GGDEF Domain Protein Filp Functions as a Cyclic di-GMP Receptor and Specifically Interacts with the PilZ-Domain Protein PXO_02715 to Regulate Virulence in <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Molecular Plant-Microbe Interactions, 2014, 27, 578-589.	1.4	65
8	Alternative sigma factor RpoN2 is required for flagellar motility and full virulence of Xanthomonas oryzae pv. oryzae. Microbiological Research, 2015, 170, 177-183.	2.5	52
9	The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility. Applied and Environmental Microbiology, 2015, 81, 4358-4367.	1.4	47
10	The <i>Xanthomonas</i> effector XopK harbours E3 ubiquitinâ€ligase activity that is required for virulence. New Phytologist, 2018, 220, 219-231.	3.5	47
11	Overexpression of miR1690, an Overlapping MicroRNA in Response to Both Nitrogen Limitation and Bacterial Infection, Promotes Nitrogen Use Efficiency and Susceptibility to Bacterial Blight in Rice. Plant and Cell Physiology, 2018, 59, 1234-1247.	1.5	46
12	OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae. BMC Microbiology, 2016, 16, 269.	1.3	29
13	The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in <i>Xanthomonas oryzae</i> pv.Â <i>oryzae</i> . Journal of Applied Microbiology, 2016, 120, 1646-1657.	1.4	25
14	Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation. Applied and Environmental Microbiology, 2018, 84, .	1.4	19
15	Differentially-expressed genes in rice infected by Xanthomonas oryzae pv. oryzae relative to a flagellin-deficient mutant reveal potential functions of flagellin in host–pathogen interactions. Rice, 2014, 7, 20.	1.7	18
16	PXO_00987, a putative acetyltransferase, is required for flagellin glycosylation, and regulates flagellar motility, exopolysaccharide production, and biofilm formation in Xanthomonas oryzae pv. oryzae. Microbial Pathogenesis, 2015, 85, 50-57.	1.3	15
17	A ten geneâ€containing genomic island determines flagellin glycosylation: implication for its regulatory role in motility and virulence of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Molecular Plant Pathology, 2018, 19, 579-592.	2.0	15
18	The RpoN2â€PilRX regulatory system governs type IV pilus gene transcription and is required for bacterial motility and virulence in <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> . Molecular Plant Pathology, 2020, 21, 652-666.	2.0	10

HUAMIN CHEN

#	Article	IF	CITATIONS
19	XA21-specific induction of stress-related genes following <i>Xanthomonas</i> infection of detached rice leaves. PeerJ, 2016, 4, e2446.	0.9	9
20	<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Response Regulator TriP Regulates Virulence and Exopolysaccharide Production Via Interacting With c-di-GMP Phosphodiesterase PdeR. Molecular Plant-Microbe Interactions, 2019, 32, 729-739.	1.4	8
21	The Regulatory Functions of σ54 Factor in Phytopathogenic Bacteria. International Journal of Molecular Sciences, 2021, 22, 12692.	1.8	8
22	<scp>BLB8</scp> , an antiviral protein from <i>Brevibacillus laterosporus</i> strain <scp>B8</scp> , inhibits <i>Tobacco mosaic virus</i> infection by triggering immune response in tobacco. Pest Management Science, 2021, 77, 4383-4392.	1.7	5
23	Reporter-based screen for Arabidopsis mutants compromised in nonhost resistance. Science Bulletin, 2008, 53, 1027-1034.	4.3	3
24	RpoN2- and FliA-regulated fliTX is indispensible for flagellar motility and virulence in Xanthomonas oryzae pv. oryzae. BMC Microbiology, 2017, 17, 171.	1.3	3
25	Identification of the Regulatory Components Mediated by the Cyclic di-GMP Receptor Filp and Its Interactor PilZX3 and Functioning in Virulence of Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 2020, 33, 1196-1208.	1.4	3
26	Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Microorganisms, 2021, 9, 495.	1.6	3
27	Transcriptome Analysis Revealed Overlapping and Special Regulatory Roles of RpoN1 and RpoN2 in Motility, Virulence, and Growth of Xanthomonas oryzae pv. oryzae. Frontiers in Microbiology, 2021, 12, 653354.	1.5	3
28	Mutation of alkyl hydroperoxide reductase gene ahpC of Xanthomonas oryzae pv. oryzae affects hydrogen peroxide accumulation during the rice–pathogen interaction. Research in Microbiology, 2014, 165, 605-611.	1.0	2
29	Identification of differentially-expressed genes of rice in overlapping responses to bacterial infection by Xanthomonas oryzae pv. oryzae and nitrogen deficiency. Journal of Integrative Agriculture, 2015, 14, 888-899.	1.7	1