Marko Kaksonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926463/publications.pdf

Version: 2024-02-01

MARKO KAKSONEN

#	Article	IF	CITATIONS
1	Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2018, 19, 313-326.	37.0	1,060
2	A Modular Design for the Clathrin- and Actin-Mediated Endocytosis Machinery. Cell, 2005, 123, 305-320.	28.9	674
3	Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2006, 7, 404-414.	37.0	636
4	A Pathway for Association of Receptors, Adaptors, and Actin during Endocytic Internalization. Cell, 2003, 115, 475-487.	28.9	617
5	Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. Journal of Cell Biology, 2011, 192, 111-119.	5.2	408
6	Plasma Membrane Reshaping during Endocytosis Is Revealed by Time-Resolved Electron Tomography. Cell, 2012, 150, 508-520.	28.9	320
7	Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science, 2015, 348, 1369-1372.	12.6	216
8	RNA Clamping by Vasa Assembles a piRNA Amplifier Complex on Transposon Transcripts. Cell, 2014, 157, 1698-1711.	28.9	208
9	Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation. Cell, 2018, 174, 884-896.e17.	28.9	175
10	Endocytic vesicle scission by lipid phase boundary forces. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10277-10282.	7.1	172
11	Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2533-42.	7.1	130
12	Precise, Correlated Fluorescence Microscopy and Electron Tomography of Lowicryl Sections Using Fluorescent Fiducial Markers. Methods in Cell Biology, 2012, 111, 235-257.	1.1	130
13	PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. Journal of Cell Biology, 2007, 177, 355-367.	5.2	129
14	Visualizing the functional architecture of the endocytic machinery. ELife, 2015, 4, .	6.0	112
15	Endocytic Accessory Factors and Regulation of Clathrin-Mediated Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016733-a016733.	5.5	105
16	The InÂVivo Architecture of the Exocyst Provides Structural Basis for Exocytosis. Cell, 2017, 168, 400-412.e18.	28.9	89
17	An Organized Co-assembly of Clathrin Adaptors Is Essential for Endocytosis. Developmental Cell, 2015, 33, 150-162.	7.0	75
18	Interaction of Sla2p's ANTH Domain with PtdIns(4,5)P2 Is Important for Actin-dependent Endocytic Internalization. Molecular Biology of the Cell, 2005, 16, 717-730.	2.1	68

Marko Kaksonen

#	Article	IF	CITATIONS
19	From uncertain beginnings: Initiation mechanisms of clathrin-mediated endocytosis. Journal of Cell Biology, 2013, 203, 717-725.	5.2	68
20	The Initiation of Clathrin-Mediated Endocytosis Is Mechanistically Highly Flexible. Current Biology, 2014, 24, 548-554.	3.9	57
21	The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Molecular Biology of the Cell, 2018, 29, 1346-1358.	2.1	52
22	Epsin and Sla2 form assemblies through phospholipid interfaces. Nature Communications, 2018, 9, 328.	12.8	47
23	Quantification of cytosolic interactions identifies <scp>E</scp> de1 oligomers as key organizers of endocytosis. Molecular Systems Biology, 2014, 10, 756.	7.2	43
24	Condensation of Ede1 promotes the initiation of endocytosis. ELife, 2022, 11, .	6.0	29
25	Higherâ€order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle. EMBO Reports, 2016, 17, 1044-1060.	4.5	26
26	Type-I myosins promote actin polymerization to drive membrane bending in endocytosis. ELife, 2019, 8, .	6.0	26
27	Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. ELife, 2016, 5, .	6.0	24
28	Quantitative imaging of clathrin-mediated endocytosis. Current Opinion in Cell Biology, 2018, 53, 105-110.	5.4	20
29	An autoinhibitory clamp of actin assembly constrains and directs synaptic endocytosis. ELife, 2021, 10, .	6.0	19
30	Taking apart the endocytic machinery. Journal of Cell Biology, 2008, 180, 1059-1060.	5.2	18
31	The cellular slime mold Fonticula alba forms a dynamic, multicellular collective while feeding on bacteria. Current Biology, 2022, 32, 1961-1973.e4.	3.9	11
32	PALM Reading: Seeing the Future of Cell Biology at Higher Resolution. Developmental Cell, 2006, 11, 438-439.	7.0	8