## Anatolii V Metelitsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926360/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Spirooxazines: synthesis, structure, spectral and photochromic properties. Russian Chemical Reviews, 2002, 71, 893-916.                                                                                                                                                                                                    | 6.5 | 167       |
| 2  | Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells. Dyes and Pigments, 2014, 100, 201-214.                                                                                                                                                | 3.7 | 74        |
| 3  | Photochromism and solvatochromism of push–pull or pull–push spiroindolinenaphthoxazines.<br>Physical Chemistry Chemical Physics, 2002, 4, 4340-4345.                                                                                                                                                                       | 2.8 | 66        |
| 4  | Luminescent complexes with ligands containing C=N bond. Russian Journal of Coordination<br>Chemistry/Koordinatsionnaya Khimiya, 2006, 32, 858-868.                                                                                                                                                                         | 1.0 | 66        |
| 5  | Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors. Photochemical and Photobiological Sciences, 2010, 9, 199-207.                                                                                                                        | 2.9 | 56        |
| 6  | Role of structural flexibility in the fluorescence and photochromism of salicylideneaniline: the general scheme of the phototransformations. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110, 267-270.                                                                                                  | 3.9 | 54        |
| 7  | The structural transformations and photo-induced processes in salicylidene alkylimines. Journal of<br>Molecular Structure, 2000, 526, 65-79.                                                                                                                                                                               | 3.6 | 52        |
| 8  | Kinetic and Thermodynamic Investigations of the Photochromism and Solvatochromism of Semipermanent Merocyanines. Journal of Physical Chemistry A, 2001, 105, 8417-8422.                                                                                                                                                    | 2.5 | 52        |
| 9  | Role of structural flexibility in fluorescence and photochromism of the salicylideneaniline: the<br>"aldehyde―ring rotation. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 97, 121-126.                                                                                                                   | 3.9 | 50        |
| 10 | Photo- and ionochromism of 5'-(4,5-diphenyl-1,3-oxazol-2-yl) substituted<br>spiro[indoline-naphthopyrans]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184,<br>289-297.                                                                                                                                 | 3.9 | 49        |
| 11 | Photo―and thermochromic cation sensitive spiro[indolineâ€pyridobenzopyrans]. Journal of Physical<br>Organic Chemistry, 2007, 20, 908-916.                                                                                                                                                                                  | 1.9 | 42        |
| 12 | Spectroscopic and Theoretical Evidence for the Elusive Intermediate of the Photoinitiated and<br>Thermal Rearrangements of Photochromic Spiropyrans. Journal of Physical Chemistry A, 2005, 109,<br>9605-9616.                                                                                                             | 2.5 | 36        |
| 13 | Spectral and kinetic properties of a red–blue pH-sensitive photochromic spirooxazine. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 114-121.                                                                                                                                                         | 3.9 | 35        |
| 14 | Complexes of zinc(II) with N-[2-(hydroxyalkyliminomethyl)phenyl]-4-methylbenzenesulfonamides:<br>synthesis, structure, photoluminescence properties and biological activity. Polyhedron, 2018, 144,<br>249-258.                                                                                                            | 2.2 | 32        |
| 15 | Synthesis, Photophysical and Redox Properties of the D–π–A Type Pyrimidine Dyes Bearing the<br>9-Phenyl-9H-Carbazole Moiety. Journal of Fluorescence, 2015, 25, 763-775.                                                                                                                                                   | 2.5 | 31        |
| 16 | Metal complexes of new photochromic chelator: Structure, stability and photodissociation. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 265, 1-9.                                                                                                                                                         | 3.9 | 30        |
| 17 | New V-shaped 2,4-di(hetero)arylpyrimidine push-pull systems: Synthesis, solvatochromism and sensitivity towards nitroaromatic compounds. Dyes and Pigments, 2018, 159, 35-44.                                                                                                                                              | 3.7 | 30        |
| 18 | 10-Dimethylamino Derivatives of Benzo[ <i>h</i> ]quinoline and Benzo[ <i>h</i> ]quinazolines:<br>Fluorescent Proton Sponge Analogues with Opposed <i>peri</i> -NMe <sub>2</sub> /–Nâ•Groups. How to<br>Distinguish between Proton Sponges and Pseudo-Proton Sponges. Journal of Organic Chemistry, 2016,<br>81. 5574-5587. | 3.2 | 27        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mixed-ligand Zn(II) complexes of 1-phenyl-3-methyl-4-formylpyrazole-5-one and various<br>aminoheterocycles: Synthesis, structure and photoluminescence properties. Synthetic Metals, 2016,<br>220, 543-550.               | 3.9 | 25        |
| 20 | Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated<br>cationic fragment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230,<br>118041.     | 3.9 | 24        |
| 21 | Photochemical Rearrangement of Diarylethenes: Reaction Efficiency and Substituent Effects. Journal of Organic Chemistry, 2017, 82, 8651-8661.                                                                             | 3.2 | 23        |
| 22 | Multistep Thermal Relaxation of Photoisomers in Polyphotochromic Molecules. Journal of Physical Chemistry A, 2004, 108, 10934-10940.                                                                                      | 2.5 | 22        |
| 23 | Solid state photochromism of spiropyrans. International Journal of Photoenergy, 2005, 7, 17-22.                                                                                                                           | 2.5 | 21        |
| 24 | Photochromic spiro[indoline-pyridobenzopyrans]: fluorescent metal ion sensors. Arkivoc, 2005, 2004, 16-24.                                                                                                                | 0.5 | 21        |
| 25 | 2-Hetaryl-1,3-tropolones based on five-membered nitrogen heterocycles: synthesis, structure and properties. Beilstein Journal of Organic Chemistry, 2015, 11, 2179-2188.                                                  | 2.2 | 20        |
| 26 | Synthesis and characterization of linear 1,4-diazine-triphenylamine–based selective chemosensors for recognition of nitroaromatic compounds and aliphatic amines. Dyes and Pigments, 2020, 178, 108344.                   | 3.7 | 20        |
| 27 | Isomerization and changes of the properties of spiropyrans by mechanical stress: advances and outlook. Chemistry of Heterocyclic Compounds, 2021, 57, 122-130.                                                            | 1.2 | 20        |
| 28 | Novel polychromogenic fluorine-substituted spiropyrans demonstrating either uni- or bidirectional photochromism as multipurpose molecular switches. Dyes and Pigments, 2022, 199, 110043.                                 | 3.7 | 19        |
| 29 | Title is missing!. Russian Chemical Bulletin, 2003, 52, 1172-1181.                                                                                                                                                        | 1.5 | 18        |
| 30 | Novel photochromic spirocyclic compounds of thienopyrroline series: 1. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 161-166.                                                                       | 3.9 | 18        |
| 31 | Chemical and electrochemical synthesis, molecular structures, DFT calculations and optical properties of metal-chelates of 8-(2-tosylaminobenzilideneimino)quinoline. Polyhedron, 2016, 107, 153-162.                     | 2.2 | 18        |
| 32 | Structural and Spectral Properties of Photochromic Diarylethenes: Size Effect of the Ethene Bridge.<br>Journal of Organic Chemistry, 2017, 82, 1477-1486.                                                                 | 3.2 | 18        |
| 33 | Novel fluorophores based on imidazopyrazine derivatives: Synthesis and photophysical characterization focusing on solvatochromism and sensitivity towards nitroaromatic compounds. Dyes and Pigments, 2019, 168, 248-256. | 3.7 | 18        |
| 34 | Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. Journal of Molecular Structure, 2021, 1229, 129615.                                                      | 3.6 | 18        |
| 35 | Metal complexes with azomethines containing the isomeric E-Z azo fragments. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2010, 36, 479-489.                                                       | 1.0 | 17        |
| 36 | Kinetic modelling of the photochromism and metal complexation of a spiropyran dye: Application to the Co(II) – Spiroindoline-diphenyloxazolebenzopyran system. Dyes and Pigments, 2011, 89, 324-329.                      | 3.7 | 17        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | New indoline spiropyrans with highly stable merocyanine forms. Mendeleev Communications, 2021, 31, 403-406.                                                                                                                             | 1.6 | 17        |
| 38 | Photochemistry of phenanthroline-containing spirooxazines in a low-temperature methanol matrix.<br>Chemical Physics, 2006, 323, 490-500.                                                                                                | 1.9 | 16        |
| 39 | Spiropyrans and spirooxazines. Russian Chemical Bulletin, 2008, 57, 151-158.                                                                                                                                                            | 1.5 | 16        |
| 40 | Thermodynamic and kinetic analysis of metal ion complexation by photochromic spiropyrans. Russian<br>Chemical Bulletin, 2009, 58, 1329-1337.                                                                                            | 1.5 | 16        |
| 41 | Photocyclization of diarylethenes: the effect of imidazole on the oxidative photodegradation process. Photochemical and Photobiological Sciences, 2019, 18, 1101-1109.                                                                  | 2.9 | 16        |
| 42 | Benzothiazolyl substituted spiropyrans with ion-driven photochromic transformation. Dyes and Pigments, 2020, 178, 108337.                                                                                                               | 3.7 | 16        |
| 43 | Chromogenic properties of 2-(2-carbomethoxy-3,4-dichloro-6-hydroxyphenyl)benzoxazole and its Zn(II)<br>and Cd(II) complexes. Dyes and Pigments, 2020, 180, 108417.                                                                      | 3.7 | 16        |
| 44 | Semipermanent merocyanines of spirocyclic compounds: Photochromic "balance― Dyes and Pigments,<br>2021, 186, 109070.                                                                                                                    | 3.7 | 16        |
| 45 | Polychromogenic molecular systems based on photo- and ionochromic spiropyrans. Dyes and Pigments, 2018, 158, 506-516.                                                                                                                   | 3.7 | 15        |
| 46 | A novel photoreversible photochromic system involving a hydrogen transfer/cyclization sequence.<br>Chemical Communications, 2003, , 2080-2081.                                                                                          | 4.1 | 14        |
| 47 | Title is missing!. Russian Chemical Bulletin, 2002, 51, 462-466.                                                                                                                                                                        | 1.5 | 13        |
| 48 | Synthesis, structure, photo- and electroluminescence studies of<br>bis[2-(N-tosylamino)benzylidene-4′-dimethylaminophenylaminato]zinc. Russian Chemical Bulletin, 2014,<br>63, 1759-1764.                                               | 1.5 | 13        |
| 49 | Facile synthesis of photoactive diaryl(hetaryl)cyclopentenes by ionic hydrogenation. RSC Advances, 2016, 6, 59016-59020.                                                                                                                | 3.6 | 13        |
| 50 | Heteroacenes Bearing the Pyrimidine Scaffold: Synthesis, Photophysical and Electrochemical Properties. European Journal of Organic Chemistry, 2016, 2016, 1420-1428.                                                                    | 2.4 | 13        |
| 51 | Synthesis and study of new photochromic spiropyrans modified with carboxylic and aldehyde substituents. Journal of Molecular Structure, 2019, 1196, 409-416.                                                                            | 3.6 | 13        |
| 52 | Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: Synthesis, structure, photochromic and biological properties. Bioorganic and Medicinal Chemistry Letters, 2021, 31, 127709. | 2.2 | 13        |
| 53 | Photochromic Spiropyrans of Coumarine Series. Molecular Crystals and Liquid Crystals, 1994, 246, 37-40.                                                                                                                                 | 0.3 | 12        |
| 54 | Novel photochromic spirocyclic compounds of thienopyrroline series: 2. Spirooxazines. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 116-123.                                                                      | 3.9 | 12        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and photochromic properties of spiropyrans containing a fused benzopyranone fragment.<br>Russian Journal of Organic Chemistry, 2009, 45, 1091-1097.                                                              | 0.8 | 12        |
| 56 | Spiropyrans and spirooxazines 8. 5′-(1,3-Benzothiazol-2-yl)-substituted<br>spiro[indoline-2,3′-naphthopyrans]: synthesis and spectral and photochromic properties. Russian<br>Chemical Bulletin, 2011, 60, 1921-1926.      | 1.5 | 12        |
| 57 | Zinc complexes of 1-Propyl-2-(2-tosylaminophenyl)-5-aminobenzimidazole: Synthesis, structure, and<br>luminescence properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2014,<br>40, 468-472.   | 1.0 | 12        |
| 58 | Operando XAS and UV–Vis Characterization of the Photodynamic Spiropyran–Zinc Complexes. Journal of Physical Chemistry B, 2019, 123, 1324-1331.                                                                             | 2.6 | 12        |
| 59 | Structures of spiropyrans exhibiting photochromic properties in the solid state. Russian Chemical Bulletin, 2021, 70, 2090-2099.                                                                                           | 1.5 | 12        |
| 60 | The twisted-intramolecular-charge-transfer-state-forming compound as a guest for cyclodextrins.<br>Journal of Photochemistry and Photobiology A: Chemistry, 1993, 75, 119-123.                                             | 3.9 | 11        |
| 61 | Spiropyrans and spirooxazines. 2. Synthesis, structures, and photochromic properties of 6"-cyano-substituted spironaphthooxazines. Russian Chemical Bulletin, 2003, 52, 2038-2047.                                         | 1.5 | 11        |
| 62 | Synthesis of Novel Iono- and Photochromic Spiropyrans Derived from<br>6,7-Dihydroxy-8-Formyl-4-Methyl-2H-Chromene-2-One. International Journal of Photoenergy, 2009, 2009,<br>1-6.                                         | 2.5 | 11        |
| 63 | Synthesis and photochromic properties of novel nonsymmetric dihetarylethenes based on benzindole and thiophene. Russian Chemical Bulletin, 2010, 59, 1639-1644.                                                            | 1.5 | 11        |
| 64 | Synthesis and photochromic properties of new nonsymmetric dihetarylethenes — indole and thiophene derivatives. Russian Chemical Bulletin, 2011, 60, 1899-1905.                                                             | 1.5 | 11        |
| 65 | Synthesis and Photochromic Properties of Asymmetric Dihetarylethenes Based on<br>5-methoxy-1,2-dimethylindole and 5-(4-bromophenyl)-2-methylthiophene. Chemistry of Heterocyclic<br>Compounds, 2014, 50, 932-940.          | 1.2 | 11        |
| 66 | Quantitative investigations of thermal and photoinduced J- and H-aggregation of hydrophobic spirooxazines in binary solvent through UV/vis spectroscopy. RSC Advances, 2014, 4, 20974-20983.                               | 3.6 | 11        |
| 67 | Synthesis, structural and optical properties of 1-alkyl-2-(2'-tosylaminophenyl)-5-nitrobenzimidazoles<br>and their zinc(II) complexes. Journal of Molecular Structure, 2016, 1104, 7-13.                                   | 3.6 | 11        |
| 68 | Chromogenic systems based on 8-(1,3-benzoxazol-2-yl) substituted spirobenzopyrans undergoing ion<br>modulated photochromic rearrangements. Journal of Photochemistry and Photobiology A: Chemistry,<br>2018, 360, 174-180. | 3.9 | 11        |
| 69 | Photochromic properties of six 5-O-n-alkyl,6′-CN substituted spironaphthoxazines. International<br>Journal of Photoenergy, 2004, 6, 199-204.                                                                               | 2.5 | 10        |
| 70 | Spiropyrans and spirooxazines. 3. Synthesis of photochromic<br>5′-(4,5-diphenyl-1,3-oxazol-2-yl)-spiro[indoline-2,3′-naphtho[2,3-b]pyran]. Russian Chemical Bulletin, 2005,<br>54, 705-710.                                | 1.5 | 10        |
| 71 | Solvation effects on spirooxazine to merocyanine thermal reversion kinetics in acetonitrile-water binary mixtures. Journal of Physical Organic Chemistry, 2005, 18, 315-320.                                               | 1.9 | 10        |
| 72 | Photochromism of the Spiropyran Thin Solid Films. Molecular Crystals and Liquid Crystals, 2005, 431, 351-356.                                                                                                              | 0.9 | 10        |

| #  | Article                                                                                                                                                                                                                                                                            | IF       | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 73 | Electrochemical and chemical synthesis of new luminescent schiff base complexes. Russian Journal of<br>General Chemistry, 2010, 80, 292-300.                                                                                                                                       | 0.8      | 10        |
| 74 | Synthesis, crystal structure, and electroluminescent properties of zinc and cadmium tetradentate azomethine complexes. Russian Journal of Inorganic Chemistry, 2014, 59, 721-732.                                                                                                  | 1.3      | 10        |
| 75 | Spectroscopic, photochromic and kinetic properties of 5'-benzothiazolyl derivatives of spiroindolinenaphthopyrans: An experimental and theoretical study. Dyes and Pigments, 2014, 111, 108-115.                                                                                   | 3.7      | 10        |
| 76 | Experimental and theoretical insight into the complexation behavior of spironaphthopyrans bearing o- positioning benzazole moiety. Journal of Molecular Structure, 2017, 1145, 55-64.                                                                                              | 3.6      | 10        |
| 77 | Synthesis and study of new photochromic unsymmetrical bis-spiropyrans with nonequivalent<br>heteroarene fragments conjugated through the common 2H,8H-pyrano[2,3-f]chromene moiety. Journal<br>of Molecular Structure, 2020, 1221, 128808.                                         | 3.6      | 10        |
| 78 | Structure and Properties of 1,3,3-Trimethyl-6′-chlorospiro[indoline-2,2′-2H-chromene]. Russian Journal of General Chemistry, 2021, 91, 1297-1304.                                                                                                                                  | 0.8      | 9         |
| 79 | Nucleation/growth of the platinum nanoparticles under the liquid phase synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127525.                                                                                                             | 4.7      | 9         |
| 80 | Spiropyrans and spirooxazines 5. Synthesis of photochromic 8-(4,5-diphenyl-1,3-oxazol-2-y1)-substituted spiro[indoline-benzopyrans]. Russian Chemical Bulletin, 2009, 58, 156-161.                                                                                                 | 1.5      | 8         |
| 81 | Spiropyrans and spirooxazines 10. Synthesis of photochromic 5′-(1,3-benzoxazol-2-yl)-substituted spiro[indoline-naphthopyrans]. Russian Chemical Bulletin, 2014, 63, 1373-1377.                                                                                                    | 1.5      | 8         |
| 82 | Synthesis and studies of new photochromic spiropyrans containing a formylcoumarin fragment.<br>Russian Chemical Bulletin, 2016, 65, 944-951.                                                                                                                                       | 1.5      | 8         |
| 83 | Zinc(II) and cadmium(II) N,N'-Bis(2-N-Tosylaminobenzylidene) diaminodipropyliminates: Syntheses,<br>structures, and photoluminescence properties. Russian Journal of Coordination<br>Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 701-710.                                       | 1.0      | 8         |
| 84 | Ion-depended photochromism of oxadiazole containing spiropyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 201-210.                                                                                                                                      | 3.9      | 8         |
| 85 | Chemical and electrochemical synthesis, structure, photoluminescent properties, and biological<br>activity of 4â€methylâ€ <i>N</i> â€{2â€{( <i>Z</i> )â€2â€{2â€pyridyl)alkyliminomethyl]phenyl]benzenesulfamide z<br>complexes. Applied Organometallic Chemistry, 2020, 34, e5302. | ziðæ(II) | 8         |
| 86 | Photo-controlled bipolar absorption switches based on 5-dimethylamino substituted indoline spiropyrans with semipermanent merocyanines. New Journal of Chemistry, 2021, 45, 13529-13538.                                                                                           | 2.8      | 8         |
| 87 | New Trends in Spiro-compounds Photochromic Metals Sensors: Quantitative Aspects. , 2017, , 3-35.                                                                                                                                                                                   |          | 8         |
| 88 | Synthesis, Structure, Spectral-Luminescent Properties, and Biological Activity of Chlorine-Substituted<br>Azomethines and Their Zinc(II) Complexes. Russian Journal of General Chemistry, 2021, 91, 1706-1716.                                                                     | 0.8      | 8         |
| 89 | Structures and photochromic properties of fulgides based on naphtho[1,2-b]furan and benzo[g]indole. Russian Chemical Bulletin, 2010, 59, 954-959.                                                                                                                                  | 1.5      | 7         |
| 90 | Photo- and ionochromic indoline spiropyrans based on<br>7,8-dihydroxy-4-methyl-2-oxo-2H-chromene-6-carbaldehyde. Russian Journal of Organic Chemistry, 2011,<br>47, 1370-1374.                                                                                                     | 0.8      | 7         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Photo- and thermochromic spirans 37.* New symmetrical bisspiropyrans of the indoline series.<br>Chemistry of Heterocyclic Compounds, 2012, 48, 1361-1370.                                                                             | 1.2 | 7         |
| 92  | Synthesis, crystal molecular structure, and magnetic characteristics of coordination polymers<br>formed by Co( <scp>ii</scp> ) diketonates with pentaheterocyclic triphenodioxazines. New Journal of<br>Chemistry, 2021, 45, 304-313. | 2.8 | 7         |
| 93  | Synthesis, structure, and photoluminescent and electroluminescent properties of zinc(II) complexes with bidentate azomethine ligands. Applied Organometallic Chemistry, 2021, 35, e6107.                                              | 3.5 | 7         |
| 94  | Chromogenic properties of heterocyclic compounds: Barochromic effect of indoline spiropyrans in the gas phase. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113982.                                            | 3.9 | 7         |
| 95  | Light-induced adiabatic structural relaxation and electronic energy deactivation in Pyridinium bications. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132, 59-66.                                                  | 3.9 | 6         |
| 96  | Synthesis and photochromic properties of fulgides based on naphtho[1,2-b]furan and benzo[g]indole.<br>Russian Journal of Organic Chemistry, 2006, 42, 1861-1863.                                                                      | 0.8 | 6         |
| 97  | N,N′-Bis(9-anthrylmethyl)diamines as fluorescent chemosensors for transition metal cations. Russian<br>Journal of Organic Chemistry, 2007, 43, 388-392.                                                                               | 0.8 | 6         |
| 98  | Synthesis, structures, and photochromic properties of<br>2-methylthieno[3,2-b][1]benzothiophen-3-ylfulgide. Russian Chemical Bulletin, 2007, 56, 2400-2406.                                                                           | 1.5 | 6         |
| 99  | Photo- and thermochromic spiranes. 31.* Photochromic cationic spiropyrans with a pyridinium fragment in the aliphatic side chain*2. Chemistry of Heterocyclic Compounds, 2008, 44, 1229-1237.                                         | 1.2 | 6         |
| 100 | Synthesis, structures, and photochromic properties of N-aryl-3-indolylfulgides. Russian Chemical Bulletin, 2008, 57, 1435-1443.                                                                                                       | 1.5 | 6         |
| 101 | Photochromism of 2-benzyl-3-benzoyl-4(1H)-quinolone derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 8-14.                                                                                            | 3.9 | 6         |
| 102 | Photochromic and thermochromic spiranes. 34.* synthesis of photochromic<br>5-(4,5-diphenyl-1,3-oxazol-2-yl)-substituted spirobenzochromeneindolines. Chemistry of Heterocyclic<br>Compounds, 2011, 47, 865-876.                       | 1.2 | 6         |
| 103 | Photo- and thermochromic spirans. 38*. New (1-alkyl-4,5-diphenyl)imidazolyl-substituted spirobenzopyrans. Chemistry of Heterocyclic Compounds, 2013, 48, 1533-1538.                                                                   | 1.2 | 6         |
| 104 | Novel photochromic indolinospiropyrans of coumarin series with high level of colorability. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 12-18.                                                                 | 3.9 | 6         |
| 105 | Synthesis and properties of new π-conjugated imidazole/carbazole structures. Dyes and Pigments, 2017, 141, 512-520.                                                                                                                   | 3.7 | 6         |
| 106 | Photochromic coumarin spiropyranes with switching of optical properties by lanthanide ions.<br>Russian Chemical Bulletin, 2019, 68, 1223-1231.                                                                                        | 1.5 | 6         |
| 107 | Modulation of diarylethene fluorescence by photochromic switching and solvent polarity.<br>Mendeleev Communications, 2019, 29, 564-566.                                                                                               | 1.6 | 6         |
| 108 | Photoinduced Skeletal Rearrangement of Diarylethenes: Photorelease of Lewis Acid and Synthetic Applications. Journal of Organic Chemistry, 2021, 86, 16806-16814.                                                                     | 3.2 | 6         |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The Influence of Molecular and Crystal Structure on the Character of Photoconversions in the<br>Crystals of C-(2-naphthyl-1-vinyl)-N-n-methylphenyl Nitrone and C-(2-naphthyl-1-vinyl)-N-phenyl Nitrone.<br>Molecular Crystals and Liquid Crystals, 1992, 220, 231-244. | 0.3 | 5         |
| 110 | New Photochromic <i>bis</i> -Spirocyclic Systems. Molecular Crystals and Liquid Crystals, 1997, 297, 219-226.                                                                                                                                                           | 0.3 | 5         |
| 111 | Identification and extraction—spectrophotometric or extraction—fluorimetric determination of<br>organic nitrogen-containing triiodides, new biologically active compounds. Journal of Analytical<br>Chemistry, 2000, 55, 245-248.                                       | 0.9 | 5         |
| 112 | Synthesis, structures, and photochromic properties of<br>3-[(E)-alk-1-enyl]-4-(1-alkyl-5-methoxy-2-methyl-1H-indol-3-yl)furan-2,5-diones. Russian Chemical Bulletin,<br>2011, 60, 1090-1095.                                                                            | 1.5 | 5         |
| 113 | Spiropyrans and spirooxazines 6. The spectral and kinetic properties of<br>5-(4,5-diphenyl-1,3-oxazol-2-yl)-substituted spironaphthopyrans: an experimental and theoretical study.<br>Russian Chemical Bulletin, 2011, 60, 456-464.                                     | 1.5 | 5         |
| 114 | Photo- and thermochromic spirans. 35.* Synthesis and photochromic properties of<br>spiro[indoline-2,3′-pyrano[3,2-f]quinolines] and their cationic derivatives. Chemistry of Heterocyclic<br>Compounds, 2012, 48, 525-531.                                              | 1.2 | 5         |
| 115 | Synthesis and photochromic properties of fulgides and fulgimides, 5-alkoxybenzo[b]furan derivatives.<br>Russian Chemical Bulletin, 2014, 63, 1780-1784.                                                                                                                 | 1.5 | 5         |
| 116 | Photo- and Thermochromic Spirans 40*. Spiropyrans based on 5-Benzoxazolyl-4-Hydroxyisophthalic<br>Aldehyde. Chemistry of Heterocyclic Compounds, 2014, 49, 1815-1820.                                                                                                   | 1.2 | 5         |
| 117 | Photo- and thermochromic spiropyrans 43*. Spectral kinetic study of new benzoxazolyl-substituted spirobenzopyrans. Chemistry of Heterocyclic Compounds, 2015, 51, 223-228.                                                                                              | 1.2 | 5         |
| 118 | Synthesis of bis-spiropyrans based on 6,8-diformyl-5,7-dihydroxy-4-methylcoumarin and photochromic properties thereof. Chemistry of Heterocyclic Compounds, 2015, 51, 229-233.                                                                                          | 1.2 | 5         |
| 119 | Spiropyrans and spirooxazines. Russian Chemical Bulletin, 2015, 64, 677-682.                                                                                                                                                                                            | 1.5 | 5         |
| 120 | Spiropyrans and spirooxazines 12. Synthesis and complexation of a rhodamine-substituted spiro[benzopyran-indoline]. Russian Chemical Bulletin, 2016, 65, 2895-2900.                                                                                                     | 1.5 | 5         |
| 121 | Synthesis, structure, and photoluminescence properties of<br>bis[2-(1,3-benzoxazol-2-yl-ήN)-4,5-dichloro-3-(ethoxycarbonyl)phenolato-ήO]zinc(II). Russian Journal of<br>Organic Chemistry, 2016, 52, 1018-1021.                                                         | 0.8 | 5         |
| 122 | Proton-induced fluorescence in modified quino[7,8- <i>h</i> ]quinolines: dual sensing for protons and<br>ï€-donors. Organic and Biomolecular Chemistry, 2019, 17, 8221-8233.                                                                                            | 2.8 | 5         |
| 123 | Photochromic Properties of Novel Spirooxazines of the Naphthalene and Phenanthrene Series in Polymeric Films. Molecular Crystals and Liquid Crystals, 1997, 298, 175-180.                                                                                               | 0.3 | 4         |
| 124 | Photochromic Spiro[7H-furo(3,2-f)-(2H-1)-benzopyran-7,2'-indolines]: Experimental and Computational<br>Evidence for the Elusive Intermediate of the Photoinitiated Ring Opening Reaction of Spiropyrans.<br>Molecular Crystals and Liquid Crystals, 2005, 430, 45-52.   | 0.9 | 4         |
| 125 | Synthesis and Photochromism of Dihetarylethenes and Spiro Compounds based on Thiophene Derivatives. Molecular Crystals and Liquid Crystals, 2005, 431, 329-335.                                                                                                         | 0.9 | 4         |
| 126 | Synthesis of Novel Photochromic Spiro Compounds based on Thieno[3,2-b]Pyrroles. Molecular<br>Crystals and Liquid Crystals, 2005, 431, 307-313.                                                                                                                          | 0.9 | 4         |

| #   | Article                                                                                                                                                                                                                                                           | IF    | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 127 | Synthesis of photochromic 3,4-bis(1,2-dimethylindol-3-yl)-2,5-dihydrothiophene. Russian Journal of<br>Organic Chemistry, 2006, 42, 619-621.                                                                                                                       | 0.8   | 4         |
| 128 | New photochromic spirobenzofuran-isobenzofurans. Chemistry of Heterocyclic Compounds, 2010, 46, 500-501.                                                                                                                                                          | 1.2   | 4         |
| 129 | Photochromic properties of phenanthroline-annulated spirooxazine in the solid state. Russian Chemical Bulletin, 2011, 60, 124-131.                                                                                                                                | 1.5   | 4         |
| 130 | Synthesis and photochromic and fluorescence properties of<br>3-(1-benzyl-5-methoxy-2-methylindolyl)-4-thienyl-substituted furan(pyrrole)-2,5-diones. Russian<br>Chemical Bulletin, 2014, 63, 109-114.                                                             | 1.5   | 4         |
| 131 | Synthesis and complex formation of spirobenzopyranindolines containing rhodamine fragment.<br>Russian Journal of General Chemistry, 2017, 87, 1007-1014.                                                                                                          | 0.8   | 4         |
| 132 | Synthesis, structure, and photoluminescence properties of<br>4-methyl-N-{2-([1-alkyl-2-[2-(p-tolylsulfonylamino)phenyl]benzimidazol-5-yl]iminomethyl)phenyl}benzenesulfonar<br>and their zinc complexes. Russian Journal of General Chemistry, 2017, 87, 764-772. | nidæs | 4         |
| 133 | Synthesis, structure, and photoluminescence properties of<br>N-{2-[5-(2-hydroxyphenylmethyleneamino)-1-alkylbenzimidazol-2-yl]phenyl}-4-methylbenzenesulfamides<br>and their zinc complexes. Russian Journal of General Chemistry, 2017, 87, 76-85.               | 0.8   | 4         |
| 134 | Synthesis and Complex Formation of Rhodamine-Substituted Spirobenzopyranindolines. Russian<br>Journal of General Chemistry, 2018, 88, 968-972.                                                                                                                    | 0.8   | 4         |
| 135 | Insights into the solvents effect on spectral and photophysical properties of novel fluorescent heteroaromatic bis-peri-fused azoxonium cations. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 127-134.                                     | 3.9   | 4         |
| 136 | Synthesis and structure of indoline spiropyrans based on benzo[f]coumarin. Russian Chemical<br>Bulletin, 2020, 69, 1378-1384.                                                                                                                                     | 1.5   | 4         |
| 137 | On Photocolored Product Structure of Photochromic Azomethines in Solutions and Crystals.<br>Molecular Crystals and Liquid Crystals, 1994, 246, 315-318.                                                                                                           | 0.3   | 3         |
| 138 | Synthesis, structure, and spectral and photochemical properties of fulgides of the indole series with an adamantylidene fragment. Russian Chemical Bulletin, 1996, 45, 2184-2188.                                                                                 | 1.5   | 3         |
| 139 | Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 527-538.                                                                                                                                                                                       | 0.8   | 3         |
| 140 | Photoisomerization of quinolin-2-yl derivatives of β-tropolone. Russian Chemical Bulletin, 2006, 55, 484-491.                                                                                                                                                     | 1.5   | 3         |
| 141 | Spiropyrans Containing the Reactive Substituents in the 2H-Chromene Moiety. International Journal of Photoenergy, 2007, 2007, 1-6.                                                                                                                                | 2.5   | 3         |
| 142 | Novel photochromic spiro compounds based on thieno[3,2â€ <i>b</i> ]pyrroles. Journal of Physical<br>Organic Chemistry, 2007, 20, 845-850.                                                                                                                         | 1.9   | 3         |
| 143 | Photo- and Ionochromic Spiroindoline-2,2′-pyrano[2,3-f]chromenecarbohydrazides—Chemosensors for<br>Lanthanide Cations. Doklady Chemistry, 2018, 480, 121-125.                                                                                                     | 0.9   | 3         |
| 144 | The first representative of a new class of charge transfer complexes in o-quinone series for organic semiconductors. Materials Today Chemistry, 2021, 20, 100462.                                                                                                 | 3.5   | 3         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Solvation effect and aggregation of semipermanent spiro[indole-phenanthrolinoxazines] in CH3CN /<br>H2O binary solvent. Arkivoc, 2005, 2005, 18-27.                                                                | 0.5 | 3         |
| 146 | New indoline spiropyrans with ?-acceptor substituents in the 8? position. Chemistry of Heterocyclic Compounds, 1990, 26, 1416-1417.                                                                                | 1.2 | 2         |
| 147 | Photochromic coumarin spiropyrans. Chemistry of Heterocyclic Compounds, 1992, 28, 503-506.                                                                                                                         | 1.2 | 2         |
| 148 | Novel Fatigue-Resistant Spirooxazines. Molecular Crystals and Liquid Crystals, 1994, 246, 33-36.                                                                                                                   | 0.3 | 2         |
| 149 | Photochromic Fulgides of the Indole and Pyrrole Series. Molecular Crystals and Liquid Crystals, 1994, 246, 59-62.                                                                                                  | 0.3 | 2         |
| 150 | Photochromic and thermochromic spiranes. 20.* Photochromic properties of solid-phase films of novel formyl-substituted spiropyrans of the indoline series. Chemistry of Heterocyclic Compounds, 1996, 32, 346-351. | 1.2 | 2         |
| 151 | Photochromic and Spectrokinetic Properties of Vacuum-Deposited Films of Spirobenzopyrans.<br>Molecular Crystals and Liquid Crystals, 1997, 298, 169-173.                                                           | 0.3 | 2         |
| 152 | Negative Photochromism of New Spirooxazine Derivatives in Acidified Solution. Molecular Crystals and Liquid Crystals, 2005, 430, 81-88.                                                                            | 0.9 | 2         |
| 153 | The role of charge transfer states in deactivation of the electronic excitation energy of spirooxazines. Doklady Chemistry, 2011, 441, 338-342.                                                                    | 0.9 | 2         |
| 154 | Synthesis and photochromic properties of N 2-alkyl-5-furyl-4-thienylpyridazinones. Russian Chemical<br>Bulletin, 2011, 60, 168-174.                                                                                | 1.5 | 2         |
| 155 | Photochemistry of a 6′â€cyanosubstituted spironaphthooxazine: photoâ€induced decay of an open form.<br>Journal of Physical Organic Chemistry, 2011, 24, 833-842.                                                   | 1.9 | 2         |
| 156 | Photodynamic chromogenic system based on photo- and ionochromic<br>8-(1,3-benzoxazol-2-yl)-substituted spirobenzopyran. Doklady Chemistry, 2016, 471, 368-372.                                                     | 0.9 | 2         |
| 157 | Photochromic fluorescent indol-3-yl-substituted maleimides. Russian Journal of Organic Chemistry, 2017, 53, 366-370.                                                                                               | 0.8 | 2         |
| 158 | Chromogenic Spiroindolinobenzopyrans of the Oxadiazole Series with Photodriven Ionochromic<br>Properties. Doklady Chemistry, 2018, 481, 145-149.                                                                   | 0.9 | 2         |
| 159 | Femto/Picosecond Transient Absorption Study of Ringâ€Opening Dynamics in<br>Perimidinespirocyclohexadienone Derivatives. ChemPhysChem, 2020, 21, 2565-2572.                                                        | 2.1 | 2         |
| 160 | Spin‣tate‣witching Rearrangements of Bis(dioxolene)â€Bridged CrCo Complexes: A DFT Study. European<br>Journal of Inorganic Chemistry, 2021, 2021, 4113-4121.                                                       | 2.0 | 2         |
| 161 | Hydrogen bond effect of the photoswitching of a spiropyran dyad. Journal of Photochemistry and<br>Photobiology A: Chemistry, 2020, 398, 112611.                                                                    | 3.9 | 2         |
| 162 | Structure and photochromic transformations of fulgides of the indole series. Chemistry of<br>Heterocyclic Compounds, 1990, 26, 28-36.                                                                              | 1.2 | 2         |

| #   | Article                                                                                                                                                                                                | IF        | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 163 | Photochemical cyclization of 1-methyl-3-indolymethylene (diphenylmethylene) succinic anhydride.<br>Chemistry of Heterocyclic Compounds, 1989, 25, 591-592.                                             | 1.2       | 1         |
| 164 | Mechanism of the photoreactions of fulgides based on 1,2-dimethyl-3-formylindole. Chemistry of Heterocyclic Compounds, 1991, 27, 1012-1015.                                                            | 1.2       | 1         |
| 165 | Fulgides based on 1,3-dimethyl-2-formylindole and 1,3-dimethyl-2-acetylindole. Chemistry of Heterocyclic Compounds, 1992, 28, 355-356.                                                                 | 1.2       | 1         |
| 166 | The Structure and Photochromism of 3-Phenyl-5,5-dimethylspiro<br>(1,3-oxazalidin-2-thione)-4,2′-[2H]chromenes. Molecular Crystals and Liquid Crystals, 1997, 297, 227-231.                             | 0.3       | 1         |
| 167 | Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1018-1022.                                                                                                                          | 0.8       | 1         |
| 168 | Synthesis of 1,2-bis(3-methylbenzo[b]furan-2-yl)cyclopentene and<br>1,2-bis(3-methylbenzo[b]furan-2-yl)cyclohexene. Russian Journal of Organic Chemistry, 2006, 42,<br>1727-1729.                      | 0.8       | 1         |
| 169 | Photo-and thermochromic spiranes. 25. New indolinospiropyrans containing a condensed furan fragment. Chemistry of Heterocyclic Compounds, 2006, 42, 858-867.                                           | 1.2       | 1         |
| 170 | Synthesis and reactions of 2-(dimethylaminomethylidene)-6-methoxynaphto[1,8-bc]pyran-3-one. Russian<br>Journal of Organic Chemistry, 2008, 44, 602-606.                                                | 0.8       | 1         |
| 171 | Synthesis and structure of new 6-substituted<br>5-methyl-5,6-dihydrocyclohepta[b]indole-9,10-dicarboxylic anhydrides. Russian Journal of Organic<br>Chemistry, 2009, 45, 1382-1385.                    | 0.8       | 1         |
| 172 | Photochromism of $6\hat{a}\in^2$ -cyanosubstituted spirooxazines in frozen alcohol matrices. Kinetics and Catalysis, 2011, 52, 202-209.                                                                | 1.0       | 1         |
| 173 | Spiropyrans and spirooxazines 7. Novel spirobipyrans and their cationic derivatives. Russian Chemical<br>Bulletin, 2011, 60, 1917-1920.                                                                | 1.5       | 1         |
| 174 | Spiropyrans and spirooxazines 9. Photochromism of novel cationic spirooxazines. Russian Chemical<br>Bulletin, 2013, 62, 529-535.                                                                       | 1.5       | 1         |
| 175 | Photo- and Ionochromism of Benzoxazolyl-Substituted Spirobenzopyrans. Doklady Chemistry, 2018,<br>478, 26-30.                                                                                          | 0.9       | 1         |
| 176 | Novel Photo- and Ionochromic Benzothiazole-Substituted Spirobipyrans. Doklady Chemistry, 2020, 494,<br>141-144.                                                                                        | 0.9       | 1         |
| 177 | 6,7â€Ðihydroâ€5 H â€1,2,4â€ŧriazolo[3,4―b ][1,3,4]thiadiazine Ring Cleavage and Tautomerism of the Product<br>Experimental and Theoretical Study. ChemistrySelect, 2020, 5, 3586-3592.                 | s:<br>1.5 | 1         |
| 178 | Synthesis and Photochromic Properties of Bis-Spirocyclic Compounds Based on<br>1,3-Dihydroxy-6-oxo-6H-benzo[c]chromene-2,4-dicarbaldehyde. Russian Journal of General Chemistry,<br>2021, 91, 626-630. | 0.8       | 1         |
| 179 | New indoline spiropyrans with highly stable merocyanine forms. Mendeleev Communications, 2021, 31, 403-406.                                                                                            | 1.6       | 1         |
| 180 | Biphotochromic and ionochromic benzoxazolyl-substituted spirobipyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 413, 113259.                                                     | 3.9       | 1         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Unusual cyclization of N-imidazolyl quinone imines with the formation of thiadiazole ring and its subsequent recyclization. Mendeleev Communications, 2022, 32, 386-389.                           | 1.6 | 1         |
| 182 | Photo- and thermochromic 2-amino-2H-chromenes. Chemistry of Heterocyclic Compounds, 1980, 16, 799-806.                                                                                             | 1.2 | 0         |
| 183 | Ring-chain tautomerism and thermo- and photochromism of 3-(1-hydroxy-4-methyl-2-naphthyl)propenal<br>imines. Chemistry of Heterocyclic Compounds, 1983, 19, 824-831.                               | 1.2 | 0         |
| 184 | Photochromic fulgides of the indole series. Chemistry of Heterocyclic Compounds, 1986, 22, 1274-1274.                                                                                              | 1.2 | 0         |
| 185 | Energetics and structural mechanisms of photochemical processes in molecules of aldonitrone vinylogs. Chemistry of Heterocyclic Compounds, 1990, 26, 1145-1149.                                    | 1.2 | 0         |
| 186 | Photochromic 2-pyrrylfulgides. Chemistry of Heterocyclic Compounds, 1990, 26, 953-953.                                                                                                             | 1.2 | 0         |
| 187 | Photochemistry of 2-amino-2H-benzochromenes. Chemistry of Heterocyclic Compounds, 1991, 27, 357-362.                                                                                               | 1.2 | 0         |
| 188 | Synthesis and photochemical properties of the indoline series fulgides. Chemistry of Heterocyclic Compounds, 1992, 28, 48-52.                                                                      | 1.2 | 0         |
| 189 | The Search and Investigation of the Novel Photo-Thermochromic and Luminescent Flexible Structures with Intramolecular Proton Transfer. Molecular Crystals and Liquid Crystals, 1997, 298, 115-120. | 0.3 | 0         |
| 190 | The Structure and Photochemical Properties of Novel Fulgides of Indoline Series with an<br>Adamantylidene Fragment. Molecular Crystals and Liquid Crystals, 1997, 297, 93-98.                      | 0.3 | 0         |
| 191 | Novel Photochromic 2H-Chromenes with π-Donor Substituents in the 2H-Pyran Ring. Molecular<br>Crystals and Liquid Crystals, 1997, 297, 213-218.                                                     | 0.3 | 0         |
| 192 | Spirooxazines: Synthesis, Structure, Spectral and Photochromic Properties. ChemInform, 2003, 34, no.                                                                                               | 0.0 | 0         |
| 193 | A Novel Photoreversible Photochromic System Involving a Hydrogen Transfer/Cyclization Sequence<br>ChemInform, 2003, 34, no.                                                                        | 0.0 | 0         |
| 194 | Spiropyrans and Spirooxazines. Part 1. Synthesis and Photochromic Properties of 9′-Hydroxy- and<br>9′-Alkoxy-Substituted Spironaphthooxazines ChemInform, 2004, 35, no.                            | 0.0 | 0         |
| 195 | Spiropyrans and Spirooxazines. Part 2. Synthesis, Structures, and Photochromic Properties of 6′-Cyano-Substituted Spironaphthooxazines ChemInform, 2004, 35, no.                                   | 0.0 | 0         |
| 196 | Novel asymmetric dihetarylethenes derived from N-isopropylindole and thiophene: synthesis and photochromic properties. Russian Chemical Bulletin, 2013, 62, 2424-2429.                             | 1.5 | 0         |
| 197 | Synthesis and photochromism of spiroindoline-2,2'-pyrano[2,3-f]coumarins. Doklady Chemistry, 2015, 465, 299-302.                                                                                   | 0.9 | 0         |
| 198 | Spiropyrans and spirooxazines 13. Synthesis and photochromic properties of benzoxazolyl-substituted spirobenzopyrans. Russian Chemical Bulletin, 2018, 67, 1476-1481.                              | 1.5 | 0         |

| #   | Article                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | A novel photochromic hetarylalkylideneisocromandione system. Journal of Photochemistry and<br>Photobiology A: Chemistry, 2022, 427, 113793. | 3.9 | 0         |