
Pedro Merino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926253/publications.pdf Version: 2024-02-01

DEDDO MEDINO

#	Article	IF	CITATIONS
1	Microstructure and Mechanical Properties of an Extruded 6005A Al Alloy Composite Reinforced with TiC Nanosized Particles and Strengthened by Precipitation Hardening. Metals, 2020, 10, 1050.	1.0	5
2	Age Hardening of Extruded AA 6005A Aluminium Alloy Powders. Materials, 2019, 12, 2316.	1.3	5
3	Estimation of crystallite size and lattice strain in nano-sized TiC particle-reinforced 6005A aluminium alloy from X-ray diffraction line broadening. Powder Technology, 2019, 343, 19-28.	2.1	27
4	Microstructure and mechanical properties of Al/SiC composite surface layer produced by friction stir processing. Ciência & Tecnologia Dos Materiais, 2017, 29, e82-e86.	0.5	12
5	Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite. Powder Technology, 2017, 321, 31-43.	2.1	96
6	Influence of the initial surface state of bodies in contact on the formation of white etching layers under dry sliding conditions. Wear, 2016, 366-367, 209-216.	1.5	13
7	Effect of the deep cryogenic treatment on the stress corrosion cracking behaviour of AA 2017â€₹4 aluminium alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2016, 67, 504-512.	0.8	12
8	A study of laser melt injection of TiN particles to repair maraging tool steels. Surface and Interface Analysis, 2014, 46, 861-864.	0.8	13
9	Laser surface melting: A suitable technique to repair damaged surfaces made in 14 Ni (200 grade) maraging steel. Surface and Coatings Technology, 2012, 212, 159-168.	2.2	29
10	Surface modification of 7075â€ī6 aluminium alloy by laser melting. Surface and Interface Analysis, 2012, 44, 977-981.	0.8	7
11	Development of a high wear resistance aluminium matrix nanoreinforced composite. Surface and Interface Analysis, 2012, 44, 1005-1008.	0.8	13
12	Microstructure and mechanical behavior of laser surface melted AISI M2 highâ€speed steel. Surface and Interface Analysis, 2010, 42, 752-756.	0.8	9
13	Surface modification of 2017â€ī4 aluminium alloy by high power diode laser melting. Surface and Interface Analysis, 2010, 42, 748-751.	0.8	3
14	Mo implantation in austenitic stainless steels: effect on the corrosion resistance in chloride acidic media. Surface and Interface Analysis, 2010, 42, 621-625.	0.8	2
15	Microstructural characterization of laser surface melted AISI M2 tool steel. Journal of Microscopy, 2010, 239, 184-193.	0.8	19
16	Modificación de los aceros rápidos de herramientas AISI M2 por fusión superficial con láser bajo diferentes condiciones de operación. Revista De Metalurgia, 2010, 46, 206-218.	0.1	5
17	Impedance spectroscopy study of saturated mortar samples. Electrochimica Acta, 2008, 53, 7549-7555.	2.6	63
18	Electrochemical behaviour of an AISI 304L stainless steel implanted with nitrogen. Electrochimica Acta, 2008, 53, 6000-6007.	2.6	35

Pedro Merino

#	Article	IF	CITATIONS
19	The effect of red mud in the electrochemical behaviour of carbon steel embedded in mortar. Revista De Metalurgia, 2008, 44, .	0.1	1
20	Evaluation of environmentally friendly paints over weathering galvanised steel. Progress in Organic Coatings, 2003, 46, 197-210.	1.9	5
21	Electrical effects generated by mechanical loading of hardened Portland cement paste. Cement and Concrete Composites, 2003, 25, 351-356.	4.6	36
22	Comparative study between galvanised steel and three duplex systems submitted to a weathering cyclic test. Corrosion Science, 2002, 44, 481-500.	3.0	35
23	Impedance spectroscopy study of hardened Portland cement paste. Cement and Concrete Research, 2002, 32, 881-891.	4.6	189
24	Effect of yttrium and erbium ion implantation on the oxidation behaviour of the AISI 304 austenitic steel. Surface and Coatings Technology, 2000, 126, 116-122.	2.2	32
25	Electrochemical Impedance Spectroscopy Study of the Corrosion Process on Coated Galvanized Steel in a Salt Spray Fog Chamber. Corrosion, 2000, 56, 1220-1232.	0.5	29
26	Characterisation of the barrier properties of different paint systems. Progress in Organic Coatings, 1999, 36, 102-108.	1.9	101
27	Characterisation of the barrier properties of different paint systems. Progress in Organic Coatings, 1999, 37, 169-177.	1.9	57
28	A New Approach to the Determination of the Cathodic Protection Period in Zinc-Rich Paints. Corrosion, 1999, 55, 1173-1181.	0.5	74
29	Corrosivity of the N.W. Spanish sea water. Environmental Technology Letters, 1988, 9, 625-636.	0.4	1
30	Analysis of the Passive Layer Developed on Two Stainless Steels Co-Implanted with Chromium and Nitrogen. Materials Science Forum, 0, 587-588, 800-804.	0.3	0
31	An Insight on the Influence of Ion Implantation on the Pitting Corrosion Resistance of AISI 430 Stainless Steel. Defect and Diffusion Forum, 0, 289-292, 501-508.	0.4	2
32	Optimization of Ageing Parameters of a Low Nickel Maraging Steel. Materials Science Forum, 0, 636-637, 471-477.	0.3	2