Kun Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8926073/publications.pdf

Version: 2024-02-01

71097 118840 7,168 305 41 62 citations h-index g-index papers 307 307 307 3890 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Simulated potential wind power sensitivity to the planetary boundary layer parameterizations combined with various topography datasets in the weather research and forecasting model. Energy, 2022, 239, 122047.	8.8	9
2	Particle behaviours of biomass gasification in a bubbling fluidized bed. Chemical Engineering Journal, 2022, 428, 131847.	12.7	46
3	Immersed boundary method for multiphase transport phenomena. Reviews in Chemical Engineering, 2022, 38, 363-405.	4.4	14
4	A refined wind farm parameterization for the weather research and forecasting model. Applied Energy, 2022, 306, 118082.	10.1	12
5	Predicting co-pyrolysis of coal and biomass using machine learning approaches. Fuel, 2022, 310, 122248.	6.4	45
6	Mathematical modeling of shear-activated targeted nanoparticle drug delivery for the treatment of aortic diseases. Biomechanics and Modeling in Mechanobiology, 2022, 21, 221-230.	2.8	8
7	Full-loop simulation of a 1 MWth pilot-scale chemical looping combustion system. Chemical Engineering Science, 2022, 249, 117301.	3 . 8	10
8	Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair. Biomechanics and Modeling in Mechanobiology, 2022, 21, 419-431.	2.8	8
9	Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production. Energy, 2022, 241, 122873.	8.8	30
10	Large Eddy Simulation of the Layout Effects on Wind Farm Performance Coupling With Wind Turbine Control Strategies. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	7
11	Three-dimensional simulation of a gas-fueled chemical looping combustion system with dual circulating fluidized bed reactors. Energy, 2022, 246, 123293.	8.8	7
12	Numerical Simulation of a 10 kW Gas-Fueled Chemical Looping Combustion Unit. Energies, 2022, 15, 1973.	3.1	2
13	The enhanced role of atmospheric reduced nitrogen deposition in future over East Asia–Northwest Pacific. Science of the Total Environment, 2022, 833, 155146.	8.0	4
14	Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed. Energy, 2022, 247, 123496.	8.8	11
15	Particle-scale study of coal-direct chemical looping combustion (CLC). Energy, 2022, 250, 123859.	8.8	8
16	Experimental and Kinetic Studies on Tobacco Pyrolysis under a Wide Range of Heating Rates. ACS Omega, 2022, 7, 1420-1427.	3.5	8
17	Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle. Frontiers in Physiology, 2022, 13, 867613.	2.8	4
18	Component quantification of aortic blood flow energy loss using computational fluid-structure interaction hemodynamics. Computer Methods and Programs in Biomedicine, 2022, 221, 106826.	4.7	13

#	Article	IF	CITATIONS
19	Studies on a swirling heptane spray flame by large-eddy simulation. Aerospace Science and Technology, 2022, , 107632.	4.8	2
20	An improved direct-forcing immersed boundary method for simulations of flow and heat transfer in particle-laden flows. International Journal of Multiphase Flow, 2022, 153, 104139.	3.4	3
21	Recent advances in hybrid <scp>E</scp> ulerian– <scp>L</scp> agrangian description of atomization. Canadian Journal of Chemical Engineering, 2022, 100, 2071-2092.	1.7	O
22	Evaluation of the spatiotemporal unsteady characteristics of the tip leakage vortex based on a direct numerical simulation database. Physics of Fluids, 2022, 34, .	4.0	8
23	Diurnal impact of atmospheric stability on inter-farm wake and power generation efficiency at neighboring onshore wind farms in complex terrain. Energy Conversion and Management, 2022, 267, 115897.	9.2	23
24	The interaction between droplet evaporation and turbulence with interface-resolved direct numerical simulation. Physics of Fluids, 2022, 34, .	4.0	7
25	Bubble Dynamics and Particle Orientation in a Binary Fluidized Bed Containing Spherocylinders and Spheres. Industrial & Engineering Chemistry Research, 2022, 61, 11209-11225.	3.7	2
26	The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents. National Science Review, 2021, 8, nwaa157.	9.5	16
27	Analysis and development of novel data-driven drag models based on direct numerical simulations of fluidized beds. Chemical Engineering Science, 2021, 231, 116245.	3.8	27
28	Imposing mixed Dirichlet-Neumann-Robin boundary conditions on irregular domains in a level set/ghost fluid based finite difference framework. Computers and Fluids, 2021, 214, 104772.	2.5	4
29	Turbulence/flame/wall interactions in non-premixed inclined slot-jet flames impinging at a wall using direct numerical simulation. Proceedings of the Combustion Institute, 2021, 38, 2711-2720.	3.9	8
30	Turbulence, evaporation and combustion interactions in <mml:math altimg="si19.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -heptane droplets under high pressure conditions using DNS. Combustion and Flame, 2021, 225, 417-427.	5.2	16
31	Large eddy simulation of Cambridge bluff-body coal (CCB2) flames with a flamelet progress variable model. Proceedings of the Combustion Institute, 2021, 38, 5347-5354.	3.9	2
32	A DNS study on temporally evolving jet flames of pulverized coal/biomass co-firing with different blending ratios. Proceedings of the Combustion Institute, 2021, 38, 4005-4012.	3.9	10
33	A-priori and a-posteriori studies of a direct moment closure approach for turbulent combustion using DNS data of a premixed flame. Proceedings of the Combustion Institute, 2021, 38, 3003-3011.	3.9	4
34	Direct numerical simulation of turbulence modulation by premixed flames in a model annular swirling combustor. Proceedings of the Combustion Institute, 2021, 38, 3013-3020.	3.9	7
35	Direct numerical simulations of turbulent non-premixed flames: Assessment of turbulence within swirling flows. Physics of Fluids, 2021, 33, 015112.	4.0	8
36	2-D and 3-D measurements of flame stretch and turbulence–flame interactions in turbulent premixed flames using DNS. Journal of Fluid Mechanics, 2021, 913, .	3.4	11

#	Article	IF	Citations
37	Unraveling Street-Level Air Pollution upon a Pivotal City of Yangtze River Delta, China. Aerosol Science and Engineering, 2021, 5, 166-192.	1.9	1
38	Deciphering wintertime air pollution upon the West Lake of Hangzhou, China. Journal of Intelligent and Fuzzy Systems, 2021, 40, 5215-5223.	1.4	1
39	A priori assessment of convolutional neural network and algebraic models for flame surface density of high Karlovitz premixed flames. Physics of Fluids, 2021, 33, .	4.0	22
40	Predictive models for flame evolution using machine learning: <i>A priori</i> assessment in turbulent flames without and with mean shear. Physics of Fluids, 2021, 33, .	4.0	16
41	Effect of flame holder temperature on the instability modes of laminar premixed flames. Fuel, 2021, 293, 119628.	6.4	4
42	Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions. Combustion and Flame, 2021, 228, 292-301.	5.2	15
43	Flame edge structures and dynamics in planar turbulent non-premixed inclined slot-jet flames impinging at a wall. Journal of Fluid Mechanics, 2021, 920, .	3.4	6
44	Direct numerical simulation of a supercritical hydrothermal flame in a turbulent jet. Journal of Fluid Mechanics, 2021, 922, .	3.4	4
45	Effects of tip clearance size on vortical structures and turbulence statistics in tip-leakage flows: A direct numerical simulation study. Physics of Fluids, 2021, 33, .	4.0	22
46	Analysis of the particles-induced turbulence in confined gas-solid fluidized beds by PR-DNS. International Journal of Multiphase Flow, 2021, 141, 103655.	3.4	4
47	A Priori Modeling of NO Formation with Principal Component Analysis and the Convolutional Neural Network in the Context of Large Eddy Simulation. Energy & Energy & 2021, 35, 20272-20283.	5.1	4
48	Fluctuations of thermodynamic variables in compressible isotropic turbulence laden with inertial particles. Physics of Fluids, 2021, 33, .	4.0	5
49	An integrated fluid-chemical model toward modeling the thrombus formation in an idealized model of aortic dissection. Computers in Biology and Medicine, 2021, 136, 104709.	7.0	8
50	Effects of heat release on turbulence characteristics in a three-dimensional spatially developing supersonic droplet-laden mixing layer. Fuel, 2021, 301, 121030.	6.4	4
51	Fluidâ€structure interaction: Insights into biomechanical implications of endograft after thoracic endovascular aortic repair. Computers in Biology and Medicine, 2021, 138, 104882.	7.0	18
52	CFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regime. Powder Technology, 2021, 392, 619-631.	4.2	35
53	Eulerian-Lagrangian simulation of chemical looping combustion with wide particle size distributions. Chemical Engineering Science, 2021, 245, 116849.	3.8	25
54	3D Unsteady Simulation of a Scale-Up Methanation Reactor with Interconnected Cooling Unit. Energies, 2021, 14, 7095.	3.1	1

#	Article	IF	Citations
55	Three-Dimensional Simulation of the Methanation Process in a Circulating Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 16417-16429.	3.7	2
56	Direct numerical simulation of the flow around a sphere immersed in a flat-plate turbulent boundary layer. Physics of Fluids, 2021, 33, .	4.0	1
57	Decoding Tropospheric Ozone in Hangzhou, China: from Precursors to Sources. Asia-Pacific Journal of Atmospheric Sciences, 2020, 56, 321-331.	2.3	7
58	Treatment of solid objects in the Pencil Code using an immersed boundary method and overset grids. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 35-57.	1.2	8
59	A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer — Part I: A priori and budget analyses. Combustion and Flame, 2020, 216, 439-452.	5.2	16
60	High-fidelity numerical analysis of non-premixed hydrothermal flames: Flame structure and stabilization mechanism. Fuel, 2020, 259, 116162.	6.4	21
61	A finite difference discretization method for heat and mass transfer with Robin boundary conditions on irregular domains. Journal of Computational Physics, 2020, 400, 108890.	3.8	13
62	Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair. Journal of Biomechanics, 2020, 99, 109478.	2.1	20
63	Hemodynamic consequences of TEVAR with in situ double fenestrations of left carotid artery and left subclavian artery. Medical Engineering and Physics, 2020, 76, 32-39.	1.7	11
64	An augmented coarse-grained CFD-DEM approach for simulation of fluidized beds. Advanced Powder Technology, 2020, 31, 4420-4427.	4.1	41
65	Modeling and analysis of flow regimes in hydraulic conveying of coarse particles. Powder Technology, 2020, 373, 543-554.	4.2	48
66	Hybrid Flamelet/Progress Variable Approach for NO Prediction in Pulverized Coal Flames. Energy & Energy Fuels, 2020, 34, 10000-10009.	5.1	0
67	CFD-DEM coupled with thermochemical sub-models for biomass gasification: Validation and sensitivity analysis. Chemical Engineering Science, 2020, 217, 115550.	3.8	123
68	Direct numerical simulation of particle-laden turbulent boundary layers without and with combustion. Physics of Fluids, 2020, 32, 105108.	4.0	12
69	Eulerian–Lagrangian direct numerical simulation of preferential accumulation of inertial particles in a compressible turbulent boundary layer. Journal of Fluid Mechanics, 2020, 903, .	3.4	18
70	Particle-Scale Simulation of Solid Mixing Characteristics of Binary Particles in a Bubbling Fluidized Bed. Energies, 2020, 13, 4442.	3.1	10
71	Numerical Investigation of a Syngas-Fueled Chemical Looping Combustion System. Energy & System 2020, 34, 12800-12809.	5.1	5
72	A lower-dimensional approximation model of turbulent flame stretch and its related quantities with machine learning approaches. Physics of Fluids, 2020, 32, .	4.0	13

#	Article	IF	CITATIONS
73	Nonlinear effect of compound extreme weather events on ozone formation over the United States. Weather and Climate Extremes, 2020, 30, 100285.	4.1	13
74	A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain. Energy, 2020, 203, 117913.	8.8	15
75	Large-eddy simulation of hydrothermal flames using extended flamelet/progress variable approach. Journal of Supercritical Fluids, 2020, 163, 104843.	3.2	3
76	Spatial–temporal variations and process analysis of O ₃ pollution in Hangzhou during the G20 summit. Atmospheric Chemistry and Physics, 2020, 20, 5963-5976.	4.9	15
77	Fully resolved simulation of a shockwave interacting with randomly clustered particles via a ghost-cell immersed boundary method. Physics of Fluids, 2020, 32, 066105.	4.0	9
78	Three-dimensional full-loop numerical simulation of co-combustion of coal and refuse derived fuel in a pilot-scale circulating fluidized bed boiler. Chemical Engineering Science, 2020, 220, 115612.	3.8	25
79	Influences of secondary gas injection pattern on fluidized bed combustion process: A CFD-DEM study. Fuel, 2020, 268, 117314.	6.4	21
80	Novel Sensitivity Study for Biomass Directional Devolatilization by Random Forest Models. Energy & Ene	5.1	8
81	Dual-Scale Flamelet/Progress Variable Approach for Prediction of Polycyclic Aromatic Hydrocarbons Formation under the Condition of Coal Combustion. Energy & Energy & 2020, 34, 10010-10018.	5.1	2
82	Large eddy simulations and analysis of NO emission characteristics in a laboratory pulverized coal flame. Fuel, 2020, 279, 118316.	6.4	9
83	Numerical modeling on simultaneous removal of mercury and particulate matter within an electrostatic precipitator. Advanced Powder Technology, 2020, 31, 1759-1770.	4.1	14
84	Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure. International Journal of Heat and Mass Transfer, 2020, 152, 119564.	4.8	30
85	Comparative Study on Different Treatments of Coal Devolatilization for Pulverized Coal Combustion Simulation. Energy & Simulation. Ener	5.1	12
86	Characteristics and sources of PM2.5 with focus on two severe pollution events in a coastal city of Qingdao, China. Chemosphere, 2020, 247, 125861.	8.2	23
87	A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layerâ€"Part II: Strong heat losses and multi-mode combustion. Combustion and Flame, 2020, 216, 453-467.	5.2	11
88	Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron. Atmospheric Environment, 2020, 232, 117534.	4.1	26
89	Drag force for a burning particle. Combustion and Flame, 2020, 217, 188-199.	5.2	22
90	Large eddy simulation of turbulent partially premixed flames with inhomogeneous inlets using the dynamic second-order moment closure model. Combustion Theory and Modelling, 2020, 24, 705-724.	1.9	3

#	Article	IF	CITATIONS
91	Recent advances in high-fidelity simulations of pulverized coal combustion. Advanced Powder Technology, 2020, 31, 3062-3079.	4.1	13
92	Three-dimensional simulation of biomass gasification in a full-loop pilot-scale dual fluidized bed with complex geometric structure. Renewable Energy, 2020, 157, 466-481.	8.9	27
93	Analysis of Gas-Assisted Pulverized Coal Combustion in Cambridge Coal Burner CCB1 Using FPV-LES. Energy & Samp; Fuels, 2020, 34, 7477-7489.	5.1	5
94	Similarity of dissipation and enstrophy in particle-induced small-scale turbulence. Physical Review Fluids, 2020, 5, .	2.5	0
95	A three mixture fraction flamelet model for multi-stream laminar pulverized coal combustion. Proceedings of the Combustion Institute, 2019, 37, 2901-2910.	3.9	35
96	Predicting kinetic parameters for coal devolatilization by means of Artificial Neural Networks. Proceedings of the Combustion Institute, 2019, 37, 2943-2950.	3.9	40
97	Investigation on air pollution control strategy in Hangzhou for post-G20/pre-Asian-games period (2018–2020). Atmospheric Pollution Research, 2019, 10, 197-208.	3.8	20
98	Impact of substantial wind farms on the local and regional atmospheric boundary layer: Case study of Zhangbei wind power base in China. Energy, 2019, 183, 1136-1149.	8.8	22
99	Effect of Operating Parameters on Gasâ€Solid Hydrodynamics and Heat Transfer in a Spouted Bed. Chemical Engineering and Technology, 2019, 42, 2310-2320.	1.5	7
100	Real-fluid effects on laminar diffusion and premixed hydrothermal flames. Journal of Supercritical Fluids, 2019, 153, 104566.	3.2	10
101	CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technology, 2019, 354, 893-905.	4.2	97
102	Interface-resolved detailed numerical simulation of evaporating two-phase flows with robin boundary conditions on irregular domains. International Journal of Heat and Mass Transfer, 2019, 145, 118774.	4.8	8
103	Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. II. Turbulence anisotropy and growth rate. Physics of Fluids, 2019, 31, 083303.	4.0	17
104	Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. I. Turbulent structures and asymmetric properties. Physics of Fluids, 2019, 31, 083302.	4.0	7
105	A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy, 2019, 188, 116077.	8.8	102
106	Estimating biomass major chemical constituents from ultimate analysis using a random forest model. Bioresource Technology, 2019, 288, 121541.	9.6	49
107	Drag enhancement and turbulence attenuation by small solid particles in an unstably stratified turbulent boundary layer. Physics of Fluids, 2019, 31, 063303.	4.0	16
108	A Primary Computational Fluid Dynamics Study of Pre- and Post-TEVAR With Intentional Left Subclavian Artery Coverage in a Type B Aortic Dissection. Journal of Biomechanical Engineering, 2019, 141, .	1.3	23

#	Article	IF	Citations
109	Effects of solid particles and wall roughness on turbulent boundary layer in a two-phase horizontal channel flow. Powder Technology, 2019, 353, 48-56.	4.2	6
110	Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames. Applied Energy, 2019, 249, 343-354.	10.1	24
111	Investigation of supersonic turbulent flows over a sphere by fully resolved direct numerical simulation. Physics of Fluids, 2019, 31, .	4.0	12
112	The effects of collisional parameters on the hydrodynamics and heat transfer in spouted bed: A CFD-DEM study. Powder Technology, 2019, 353, 132-144.	4.2	30
113	Level set method for atomization and evaporation simulations. Progress in Energy and Combustion Science, 2019, 73, 65-94.	31.2	53
114	A priori study of an extended flamelet/progress variable model for NO prediction in pulverized coal flames. Energy, 2019, 175, 768-780.	8.8	15
115	Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 620-630.	1.6	55
116	Numerical investigation of the back-mixing and non-uniform characteristics in the three-dimensional full-loop circulating fluidized bed combustor with six parallel cyclones. Applied Thermal Engineering, 2019, 153, 524-535.	6.0	15
117	Effects of in situ fenestration stent-graft of left subclavian artery on the hemodynamics after thoracic endovascular aortic repair. Vascular, 2019, 27, 369-377.	0.9	10
118	Impacts of climate change and emissions on atmospheric oxidized nitrogen deposition over East Asia. Atmospheric Chemistry and Physics, 2019, 19, 887-900.	4.9	14
119	Insights into the role of ionic wind in honeycomb electrostatic precipitators. Journal of Aerosol Science, 2019, 133, 83-95.	3.8	44
120	Influence of particle shape on liner wear in tumbling mills: A DEM study. Powder Technology, 2019, 350, 26-35.	4.2	28
121	Exploring the stratospheric source of ozone pollution over China during the 2016 Group of Twenty summit. Atmospheric Pollution Research, 2019, 10, 1267-1275.	3.8	14
122	Numerical Investigation of Nickel–Copper Oxygen Carriers in Chemical-Looping Combustion Process with Zero Emission of CO and H ₂ . Energy & Ener	5.1	16
123	Evaluation of real-fluid flamelet/progress variable model for laminar hydrothermal flames. Journal of Supercritical Fluids, 2019, 143, 232-241.	3.2	7
124	Direct numerical simulation on auto-ignition characteristics of turbulent supercritical hydrothermal flames. Combustion and Flame, 2019, 200, 354-364.	5.2	24
125	Ethylene, xylene, toluene and hexane are major contributors of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian Games. Environmental Chemistry Letters, 2019, 17, 1151-1160.	16.2	28
126	Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF). Renewable Energy, 2019, 136, 104-114.	8.9	72

#	Article	IF	CITATIONS
127	Computational Fluid Dynamics/Discrete Element Method Investigation on the Biomass Fast Pyrolysis: The Influences of Shrinkage Patterns and Operating Parameters. Industrial & Engineering Chemistry Research, 2019, 58, 1404-1416.	3.7	29
128	CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application. Chemical Engineering Science, 2019, 197, 280-295.	3.8	116
129	Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations. Energy, 2019, 166, 1168-1180.	8.8	43
130	CFD-DEM study of the effect of ring baffles on system performance of a full-loop circulating fluidized bed. Chemical Engineering Science, 2019, 196, 130-144.	3.8	36
131	Analysis and flamelet modelling for laminar pulverised coal combustion considering the wall effect. Combustion Theory and Modelling, 2019, 23, 353-375.	1.9	3
132	Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chemical Engineering Science, 2019, 195, 693-706.	3.8	76
133	Effects of wall roughness on particle dynamics in a spatially developing turbulent boundary layer. International Journal of Multiphase Flow, 2019, 111, 140-157.	3.4	16
134	Dynamics of triple-flames in ignition of turbulent dual fuel mixture: A direct numerical simulation study. Proceedings of the Combustion Institute, 2019, 37, 4625-4633.	3.9	18
135	An improved direct-forcing immersed boundary method with inward retraction of Lagrangian points for simulation of particle-laden flows. Journal of Computational Physics, 2019, 376, 210-227.	3.8	25
136	Numerical investigation of the cluster property and flux distribution in three-dimensional full-loop circulating fluidized bed with multiple parallel cyclones. Powder Technology, 2019, 342, 253-266.	4.2	12
137	An <i>a priori</i> study of different tabulation methods for turbulent pulverised coal combustion. Combustion Theory and Modelling, 2018, 22, 505-530.	1.9	8
138	DEM investigation of the axial dispersion behavior of a binary mixture in the rotating drum. Powder Technology, 2018, 330, 93-104.	4.2	27
139	Fully resolved simulations of single char particle combustion using a ghostâ€cell immersed boundary method. AICHE Journal, 2018, 64, 2851-2863.	3.6	19
140	Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China, during World Internet Conference, 2015. Environmental Pollution, 2018, 236, 550-561.	7.5	38
141	Multiscale investigation of tube erosion in fluidized bed based on CFD-DEM simulation. Chemical Engineering Science, 2018, 183, 60-74.	3.8	29
142	Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Powder Technology, 2018, 333, 304-316.	4.2	112
143	Effect of superficial gas velocity on solid behaviors in a full-loop CFB. Powder Technology, 2018, 333, 91-105.	4.2	39
144	Sheet, ligament and droplet formation in swirling primary atomization. AIP Advances, 2018, 8, .	1.3	21

#	Article	IF	Citations
145	Translational and rotational motions of small solid particles in a spatially developing turbulent boundary layer with heat transfer. International Journal of Heat and Mass Transfer, 2018, 124, 715-725.	4.8	3
146	Numerical prediction of wear in SAG mills based on DEM simulations. Powder Technology, 2018, 329, 353-363.	4.2	45
147	Analysis of pulverized coal flame stabilized in a 3D laminar counterflow. Combustion and Flame, 2018, 189, 106-125.	5.2	42
148	Prediction of product distributions in coal devolatilization by an artificial neural network model. Combustion and Flame, 2018, 193, 283-294.	5.2	22
149	Direct numerical simulation of turbulent flow and heat transfer in a spatially developing turbulent boundary layer laden with particles. Journal of Fluid Mechanics, 2018, 845, 417-461.	3.4	15
150	Particle-Scale Investigation of Heat Transfer and Erosion Characteristics in a Three-Dimensional Circulating Fluidized Bed. Industrial & Engineering Chemistry Research, 2018, 57, 6774-6789.	3.7	26
151	Production of synthetic natural gas by CO methanation over Ni/Al2O3 catalyst in fluidized bed reactor. Catalysis Communications, 2018, 105, 37-42.	3.3	16
152	Direct numerical simulation of particle dispersion in a three-dimensional spatially developing compressible mixing layer. Physics of Fluids, 2018, 30, .	4.0	22
153	Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation. Physics of Fluids, 2018, 30, 125101.	4.0	122
154	A generalized flamelet tabulation method for partially premixed combustion. Combustion and Flame, 2018, 198, 54-68.	5.2	21
155	Impacts of compound extreme weather events on ozone in the present and future. Atmospheric Chemistry and Physics, 2018, 18, 9861-9877.	4.9	55
156	Evaluation of different flamelet tabulation methods for laminar spray combustion. Physics of Fluids, 2018, 30, .	4.0	14
157	Direct numerical simulation of droplet breakup in homogeneous isotropic turbulence: The effect of the Weber number. International Journal of Multiphase Flow, 2018, 107, 263-274.	3.4	39
158	Large-eddy simulation of multiphase combustion jet in cross-flow using flamelet model. International Journal of Multiphase Flow, 2018, 108, 211-225.	3.4	19
159	Numerical investigation on methanation kinetic and flow behavior in full-loop fluidized bed reactor. Fuel, 2018, 231, 85-93.	6.4	21
160	Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine. Energy, 2018, 160, 597-611.	8.8	12
161	A coupled vaporization model based on temperature/species gradients for detailed numerical simulations using conservative level set method. International Journal of Heat and Mass Transfer, 2018, 127, 743-760.	4.8	11
162	Structure of tetrabrachial flames in non-premixed autoigniting dimethyl ether/air mixtures. Fuel, 2018, 232, 90-98.	6.4	5

#	Article	IF	Citations
163	A computational framework for interface-resolved DNS of simultaneous atomization, evaporation and combustion. Journal of Computational Physics, 2018, 371, 751-778.	3.8	15
164	DNS analysis of incipient drop impact dynamics using an accurate level set method. Chinese Journal of Chemical Engineering, 2017, 25, 1-10.	3.5	9
165	Buoyancy effects in an unstably stratified turbulent boundary layer flow. Physics of Fluids, 2017, 29, 015104.	4.0	9
166	Numerical investigation of coal flamelet characteristics in a laminar counterflow with detailed chemistry. Fuel, 2017, 195, 232-242.	6.4	19
167	Analysis of conditional statistics of a supersonic jet flame in heated coflow via direct numerical simulation. Acta Astronautica, 2017, 134, 179-188.	3.2	6
168	Experimental study of the wake characteristics of a two-blade horizontal axis wind turbine by time-resolved PIV. Science China Technological Sciences, 2017, 60, 593-601.	4.0	4
169	Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction. Physics of Fluids, 2017, 29, 053301.	4.0	15
170	Fully resolved numerical simulation of interphase heat transfer in gas–solid turbulent flow. International Journal of Heat and Mass Transfer, 2017, 112, 45-60.	4.8	8
171	Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model. Combustion Theory and Modelling, 2017, 21, 925-953.	1.9	44
172	An efficient level set remedy approach for simulations of two-phase flow based on sigmoid function. Chemical Engineering Science, 2017, 172, 335-352.	3.8	21
173	Universal Devolatilization Process Model for Numerical Simulations of Coal Combustion. Energy & Lamp; Fuels, 2017, 31, 6525-6540.	5.1	22
174	CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed. Chemical Engineering Science, 2017, 172, 199-215.	3.8	96
175	Transient Growth and Receptivity of Steady Disturbances to Irregular Rough Walls. Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .	1.5	2
176	Computational Fluid Dynamics–Discrete Element Method Investigation of Pressure Signals and Solid Back-Mixing in a Full-Loop Circulating Fluidized Bed. Industrial & Engineering Chemistry Research, 2017, 56, 799-813.	3.7	32
177	Direct numerical simulation of turbulenceÂmodulation by particles in compressibleÂisotropic turbulence. Journal of Fluid Mechanics, 2017, 832, 438-482.	3.4	26
178	Numerical investigation of the effects of volatile matter composition and chemical reaction mechanism on pulverized coal combustion characteristics. Fuel, 2017, 210, 695-704.	6.4	21
179	Evaluation of flamelet/progress variable model for laminar pulverized coal combustion. Physics of Fluids, 2017, 29, .	4.0	45
180	Large-eddy simulation and experimental study on the turbulent wake flow characteristics of a two-bladed wind turbine. Science China Technological Sciences, 2017, 60, 1861-1869.	4.0	8

#	Article	IF	Citations
181	Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm. Applied Energy, 2017, 206, 113-125.	10.1	22
182	Numerical analysis on shock-cylinder interaction using immersed boundary method. Science China Technological Sciences, 2017, 60, 1423-1432.	4.0	8
183	Population Balance Equation of Cohesive Particle Flow in a Circulating Fluidized Bed. Chemical Engineering and Technology, 2017, 40, 1544-1551.	1.5	6
184	Direct Numerical Simulation Study on the Stabilization Mechanism of a Turbulent Lifted Pulverized Coal Jet Flame in a Heated Coflow. Energy & Samp; Fuels, 2017, 31, 8742-8757.	5.1	12
185	Numerical Simulation of CO Methanation for the Production of Synthetic Natural Gas in a Fluidized Bed Reactor. Energy &	5.1	13
186	Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field. Physical Review E, 2017, 96, 053104.	2.1	13
187	LES of pulverized coal combustion with a multi-regime flamelet model. Fuel, 2017, 188, 661-671.	6.4	57
188	Detailed numerical simulation of swirling primary atomization using a mass conservative level set method. International Journal of Multiphase Flow, 2017, 89, 57-68.	3.4	38
189	A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions Part-II: Complex geometries. International Journal of Heat and Mass Transfer, 2017, 104, 98-111.	4.8	29
190	Parallel LES-DEM simulation of dense flows in fluidized beds. Applied Thermal Engineering, 2017, 111, 1523-1535.	6.0	79
191	Large eddy simulation of turbulent combustion by a dynamic second-order moment closure model. Fuel, 2017, 187, 457-467.	6.4	12
192	Detailed numerical simulation of unsteady drag coefficient of deformable droplet. Chemical Engineering Journal, 2017, 308, 619-631.	12.7	30
193	Particle statistics in a two-way coupled turbulent boundary layer flow over a flat plate. Powder Technology, 2017, 305, 250-259.	4.2	8
194	DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum. Physics of Fluids, 2017, 29, .	4.0	14
195	Fully resolved simulations of turbulence modulation by high-inertia particles in an isotropic turbulent flow. Physics of Fluids, 2017, 29, 113301.	4.0	22
196	LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB. Chemical Engineering Journal, 2017, 313, 858-872.	12.7	35
197	Studies on shock interactions with moving cylinders using immersed boundary method. Physical Review Fluids, 2017, 2, .	2.5	11
198	Investigation of Gas-Solid Flow Dynamics and Heat Transfer in Fluidized Beds by Using DEM-LES Coupling Approach. Springer Proceedings in Physics, 2017, , 1023-1035.	0.2	0

#	Article	IF	Citations
199	Direct numerical simulation of heat transfer in a spatially developing turbulent boundary layer. Physics of Fluids, 2016, 28, .	4.0	26
200	Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. Journal of Fluid Mechanics, 2016, 802, 359-394.	3.4	39
201	Simulations of Cellular Detonation Interaction with Turbulent Flows. AIAA Journal, 2016, 54, 419-433.	2.6	21
202	Direct numerical simulation of turbulent boundary layer over hemispherical rough walls. International Journal of Multiphase Flow, 2016, 83, 128-141.	3.4	11
203	Direct numerical simulation of turbulent boundary layer with heat transfer. International Journal of Heat and Mass Transfer, 2016, 99, 10-19.	4.8	15
204	DNS of a turbulent flow past two fully resolved aligned spherical particles. Advanced Powder Technology, 2016, 27, 1149-1161.	4.1	6
205	On turbulence modulation by finite-size particles in dilute gas-solid internal flows. Powder Technology, 2016, 301, 1259-1263.	4.2	13
206	Numerical investigation of two-phase flame structures in a simplified coal jet flame. Fuel, 2016, 182, 944-957.	6.4	26
207	Large eddy simulation of a semi-industrial scale coal furnace using non-adiabatic three-stream flamelet/progress variable model. Applied Energy, 2016, 183, 1086-1097.	10.1	49
208	Turbulence modulation in a particle-laden flow over a hemisphere-roughened wall. International Journal of Multiphase Flow, 2016, 87, 250-262.	3.4	8
209	A comprehensive numerical investigation on the hydrodynamics and erosion characteristics in a pressurized fluidized bed with dense immersed tube bundles. Chemical Engineering Science, 2016, 153, 129-145.	3.8	24
210	Numerical study on three-dimensional CJ detonation waves interacting with isotropic turbulence. Science Bulletin, 2016, 61, 1756-1765.	9.0	4
211	Particleâ€resolved direct numerical simulation of gas–solid dynamics in experimental fluidized beds. AICHE Journal, 2016, 62, 1917-1932.	3.6	74
212	Direct numerical simulation on supersonic turbulent reacting and non-reacting spray jet in heated coflow. Fuel, 2016, 164, 267-276.	6.4	19
213	Direct numerical simulation of a particle-laden flow in a flat plate boundary layer. International Journal of Multiphase Flow, 2016, 79, 124-143.	3.4	46
214	Vortex dynamics of a sphere wake in proximity to a wall. International Journal of Multiphase Flow, 2016, 79, 88-106.	3.4	9
215	Heat transfer and erosion mechanisms of an immersed tube in a bubbling fluidized bed: A LES–DEM approach. International Journal of Thermal Sciences, 2016, 100, 357-371.	4.9	33
216	Computational evaluation of depth effect on the hydrodynamics of slot-rectangular spouted bed. Powder Technology, 2016, 287, 51-60.	4.2	9

#	Article	IF	CITATIONS
217	A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions. International Journal of Heat and Mass Transfer, 2016, 92, 708-717.	4.8	54
218	Time resolved particle image velocimetry experimental study of the near wake characteristics of a horizontal axis wind turbine. Journal of Zhejiang University: Science A, 2015, 16, 586-595.	2.4	4
219	Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine. Renewable Energy, 2015, 77, 351-362.	8.9	30
220	CFD simulation of high-temperature effect on EHD characteristics in a wire-plate electrostatic precipitator. Chinese Journal of Chemical Engineering, 2015, 23, 633-640.	3.5	20
221	Effects of preferential concentration on collision and erosion between solid particles and tube bank in a duct flow. International Journal of Heat and Mass Transfer, 2015, 83, 372-381.	4.8	11
222	Accurate level set method for simulations of liquid atomization. Chinese Journal of Chemical Engineering, 2015, 23, 597-604.	3.5	8
223	Conditional statistics of a laboratory-scale lifted turbulent H 2 /N 2 flame using direct numerical simulation. International Journal of Hydrogen Energy, 2015, 40, 2004-2012.	7.1	1
224	Numerical investigation of the time-related properties of solid phase in a 3-D spout-fluid bed. Chemical Engineering Journal, 2015, 267, 207-220.	12.7	14
225	CFD–DEM study of mixing and dispersion behaviors of solid phase in a bubbling fluidized bed. Powder Technology, 2015, 274, 482-493.	4.2	54
226	Three-dimensional particle-resolved direct numerical simulation study of behaviors of a particle settling near a vertical wall. Powder Technology, 2015, 275, 290-303.	4.2	8
227	Numerical study of the effects of particles on the near wake around a circular cylinder. International Journal of Computational Fluid Dynamics, 2015, 29, 150-160.	1.2	9
228	LES-DEM Investigation of Dense Flow in Circulating Fluidized Beds. Procedia Engineering, 2015, 102, 1446-1455.	1.2	6
229	Large Eddy Simulation of piloted pulverized coal combustion using the velocity-scalar joint filtered density function model. Fuel, 2015, 158, 494-502.	6.4	42
230	Simulating heat transfer from moving rigid bodies using high-order ghost-cell based immersed-boundary method. International Journal of Heat and Mass Transfer, 2015, 89, 856-865.	4.8	21
231	A mass conserving level set method for detailed numerical simulation of liquid atomization. Journal of Computational Physics, 2015, 298, 495-519.	3.8	60
232	A-priori validation of a second-order moment combustion model via DNS database. International Journal of Heat and Mass Transfer, 2015, 86, 415-425.	4.8	7
233	Direct numerical simulation of a supersonic lifted hydrogen jet flame: A priori study on combustion models. Acta Astronautica, 2015, 109, 52-64.	3.2	9
234	An improved movingâ€leastâ€squares reconstruction for immersed boundary method. International Journal for Numerical Methods in Engineering, 2015, 104, 789-804.	2.8	18

#	Article	IF	CITATIONS
235	Numerical simulation of temperature effect on particles behavior via electrostatic precipitators. Applied Thermal Engineering, 2015, 88, 127-139.	6.0	39
236	Numerical study of a lab-scale double slot-rectangular spouted bed with the parallel CFD–DEM coupling approach. Powder Technology, 2015, 272, 85-99.	4.2	39
237	High-fidelity simulation of the 3-D full-loop gas–solid flow characteristics in the circulating fluidized bed. Chemical Engineering Science, 2015, 123, 22-38.	3.8	67
238	Effects of turbulent intensity and droplet diameter on spray combustion using direct numerical simulation. Fuel, 2014, 121, 311-318.	6.4	29
239	A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation. International Journal of Heat and Mass Transfer, 2014, 75, 302-312.	4.8	40
240	LES–DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed. Part II: Solid dispersion and circulation properties. Powder Technology, 2014, 256, 395-403.	4.2	21
241	Influences of operating parameters on the hydrodynamics of a 3-D spout–fluid bed based on DEM modeling approach. Chemical Engineering Journal, 2014, 247, 161-173.	12.7	28
242	CFDâ€DEM simulation of the spout–annulus interaction in a 3D spouted bed with a conical base. Canadian Journal of Chemical Engineering, 2014, 92, 1130-1138.	1.7	11
243	Numerical investigation of erosion on a staggered tube bank by particle laden flows with immersed boundary method. Applied Thermal Engineering, 2014, 62, 444-454.	6.0	5
244	Particle-Scale Investigation of the Hydrodynamics and Tube Erosion Property in a Three-Dimensional (3-D) Bubbling Fluidized Bed with Immersed Tubes. Industrial & Engineering Chemistry Research, 2014, 53, 6896-6912.	3.7	20
245	Discrete Element Study of Solid Mixing Behavior with Temperature Difference in Three-Dimensional Bubbling Fluidized Bed. Industrial & Engineering Chemistry Research, 2014, 53, 7043-7055.	3.7	17
246	Particleâ€scale investigation of the solid dispersion and residence properties in a 3â€D spoutâ€fluid bed. AICHE Journal, 2014, 60, 2788-2804.	3.6	65
247	Coupled Computational Fluid Dynamics and Discrete Element Method Study of the Solid Dispersion Behavior in an Internally Circulating Fluidized Bed. Industrial & Engineering Chemistry Research, 2014, 53, 6759-6772.	3.7	8
248	Direct numerical simulation and reaction rate modelling of premixed turbulent flames. International Journal of Hydrogen Energy, 2014, 39, 12158-12165.	7.1	7
249	Parallel CFD–DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate. Chemical Engineering Journal, 2014, 236, 158-170.	12.7	73
250	Discrete element study of solid circulating and resident behaviors in an internally circulating fluidized bed. Chemical Engineering Journal, 2014, 248, 145-157.	12.7	14
251	LES–DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed. Part I: hydrodynamics. Powder Technology, 2014, 256, 385-394.	4.2	20
252	Conditional reaction rate in a lifted turbulent H2/N2 flame using direct numerical simulation. International Journal of Hydrogen Energy, 2014, 39, 2703-2714.	7.1	2

#	Article	IF	Citations
253	Influence of tube configuration on the gas–solid hydrodynamics of an internally circulating fluidized bed: A discrete element study. Chemical Engineering Journal, 2014, 239, 158-170.	12.7	18
254	Numerical Study of Turbulent Boundary-Layer Flow Induced by a Sphere Above a Flat Plate. Advances in Intelligent Systems and Computing, 2014, , 111-125.	0.6	1
255	DNS investigation on flame structure and scalar dissipation of a supersonic lifted hydrogen jet flame in heated coflow. International Journal of Hydrogen Energy, 2013, 38, 9886-9896.	7.1	32
256	Particle Dispersion and Circulation Patterns in a 3D Spouted Bed with or without Draft Tube. Industrial & Draft Tube. 1013, 52, 9620-9631.	3.7	44
257	Three-Dimensional Modeling of Gas–Solid Motion in a Slot-Rectangular Spouted Bed with the Parallel Framework of the Computational Fluid Dynamics–Discrete Element Method Coupling Approach. Industrial & Degree ing Chemistry Research, 2013, 52, 13222-13231.	3.7	20
258	Direct numerical simulation of a two-phase three-dimensional planar jet. International Journal of Heat and Mass Transfer, 2013, 64, 155-161.	4.8	8
259	LES-DEM investigation of gas–solid flow dynamics in an internally circulating fluidized bed. Chemical Engineering Science, 2013, 101, 213-227.	3.8	37
260	LES–DEM investigation of an internally circulating fluidized bed: Effects of gas and solid properties. Chemical Engineering Journal, 2013, 228, 583-595.	12.7	47
261	Discrete element simulation of the hydrodynamics in a 3D spouted bed: Influence of tube configuration. Powder Technology, 2013, 243, 85-95.	4.2	46
262	Fully-resolved DNS study of rotation behaviors of one and two particles settling near a vertical wall. Powder Technology, 2013, 245, 115-125.	4.2	19
263	DNS analysis of a three-dimensional supersonic turbulent lifted jet flame. Fuel, 2013, 108, 691-698.	6.4	35
264	Computational Fluid Dynamics-Discrete Element Method Investigation of Solid Mixing Characteristics in an Internally Circulating Fluidized Bed. Industrial & Engineering Chemistry Research, 2013, 52, 7556-7568.	3.7	57
265	New spray flamelet equations considering evaporation effects in the mixture fraction space. Fuel, 2013, 103, 1154-1157.	6.4	16
266	Direct Numerical Simulation and Conditional Statistics of Hydrogen/Air Turbulent Premixed Flames. Energy & Ener	5.1	13
267	Direct Numerical Simulation of Pulverized Coal Combustion in a Hot Vitiated Co-flow. Energy & Samp; Fuels, 2012, 26, 6128-6136.	5.1	53
268	Direct Numerical Simulation Study of an Experimental Lifted H ₂ /N ₂ Flame. Part 1: Validation and Flame Structure. Energy & Ene	5.1	23
269	Direct Numerical Simulation Study of an Experimental Lifted H ₂ /N ₂ Flame. Part 2: Flame Stabilization. Energy & Energ	5.1	19
270	Direct numerical simulation and CMC (conditional moment closure) sub-model validation of spray combustion. Energy, 2012, 46, 606-617.	8.8	17

#	Article	IF	CITATIONS
271	Correlation analysis on the SGS velocity between phases in an isotropic gas-particle two-phase flow with FDF model. Journal of Thermal Science, 2012, 21, 447-451.	1.9	0
272	High-fidelity resolution of the characteristic structures of a supersonic hydrogen jet flame with heated co-flow air. International Journal of Hydrogen Energy, 2012, 37, 3528-3539.	7.1	34
273	A DNS study of hydrogen/air swirling premixed flames with different equivalence ratios. International Journal of Hydrogen Energy, 2012, 37, 5246-5256.	7.1	15
274	Immersed boundary method for simulations of erosion on staggered tube bank by coal ash particles. Powder Technology, 2012, 225, 196-205.	4.2	14
275	Simulations of Particle Dispersion around Multiple Circular Cylinders via an Immersed Boundary Method. Journal of Computational Multiphase Flows, 2011, 3, 57-70.	0.8	1
276	Hydrogen Storage Properties of the Mg(NH ₃) ₆ Cl ₂ -LiH Combined System. Materials Transactions, 2011, 52, 627-634.	1.2	5
277	Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. International Journal of Hydrogen Energy, 2011, 36, 13838-13849.	7.1	28
278	Direct numerical simulation of a three-dimensional particle laden plane mixing layer considering inter-particle collisions. Chemical Engineering Science, 2011, 66, 6232-6243.	3.8	4
279	LES/FDF simulation of a gas-particle backward-facing step flow. Chemical Engineering Science, 2011, 66, 3692-3700.	3.8	10
280	Three-dimensional time-dependent numerical simulation of a quiescent carbon combustion in air. Fuel, 2011, 90, 1522-1528.	6.4	11
281	Direct numerical simulation of a particle-laden low Reynolds number turbulent round jet. International Journal of Multiphase Flow, 2011, 37, 539-554.	3.4	33
282	Numerical study of solid particle erosion on the tubes near the side walls in a duct with flow past an aligned tube bank. AICHE Journal, 2010, 56, 66-78.	3.6	1
283	Reaction Pathways Determined by Mechanical Milling Process for Dehydrogenation/Hydrogenation of the LiNH ₂ /MgH ₂ System. Chemistry - A European Journal, 2010, 16, 693-702.	3.3	40
284	Response of force behaviors of a spherical particle to an oscillating flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3046-3052.	2.1	10
285	Transient, three-dimensional simulation of particle dispersion in flows around a circular cylinder	6.4	28
286	Immersed boundary method for the simulation of flows with heat transfer. International Journal of Heat and Mass Transfer, 2009, 52, 4510-4518.	4.8	86
287	Hydrogen storage in a Li–Al–N ternary system. International Journal of Hydrogen Energy, 2009, 34, 8101-8107.	7.1	19
288	Size-Dependent Kinetic Enhancement in Hydrogen Absorption and Desorption of the Liâ^'Mgâ^'Nâ^'H System. Journal of the American Chemical Society, 2009, 131, 1862-1870.	13.7	193

#	Article	IF	Citations
289	Diffusion controlled hydrogen desorption reaction for the LiBH4/2LiNH2 system. Journal of Alloys and Compounds, 2009, 481, 473-479.	5.5	22
290	On coherent structures in a three-dimensional transitional plane jet. Science in China Series D: Earth Sciences, 2008, 51, 386-396.	0.9	4
291	Parallel computing strategy for the simulation of particulate flows with immersed boundary method. Science in China Series D: Earth Sciences, 2008, 51, 1169-1176.	0.9	7
292	DEM–LES study of 3-D bubbling fluidized bed with immersed tubes. Chemical Engineering Science, 2008, 63, 3654-3663.	3.8	72
293	Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. International Journal of Multiphase Flow, 2008, 34, 283-302.	3.4	221
294	Direct numerical simulation of particle dispersion in a turbulent jet considering inter-particle collisions. International Journal of Multiphase Flow, 2008, 34, 723-733.	3.4	36
295	Pressure-correlated dispersion of inertial particles in free shear flows. Physical Review E, 2007, 75, 046309.	2.1	9
296	Full-scale solutions to particle-laden flows: Multidirect forcing and immersed boundary method. Physical Review E, 2007, 76, 066709.	2.1	108
297	A modified immersed boundary method for simulations of fluid–particle interactions. Computer Methods in Applied Mechanics and Engineering, 2007, 197, 36-46.	6.6	41
298	Transitional phenomenon of particle dispersion in gas-solid two-phase flows. Science Bulletin, 2007, 52, 408-417.	1.7	6
299	Effects on particle dispersion by turbulent transition in a jet. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 345-350.	2.1	17
300	Local-focusing phenomenon and turbulence modulation in particle-laden turbulent jets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 343, 190-198.	2.1	5
301	Modulations on turbulent characteristics by dispersed particles in gas–solid jets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 3279-3295.	2.1	9
302	Direct numerical simulation of a near-field particle-laden plane turbulent jet. Physical Review E, 2004, 70, 026303.	2.1	31
303	Direct numerical simulation on the particle dispersion by the vortex structures in a three-dimensional mixing layer: the roll-up. Powder Technology, 2004, 146, 102-110.	4.2	5
304	LES of the turbulent coherent structures and particle dispersion in the gas–solid wake flows. Powder Technology, 2004, 147, 49-58.	4.2	10
305	Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer. Physical Review E, 2003, 68, 036309.	2.1	21