Jannette Rodriguez-Pallares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/892584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. Journal of Neurochemistry, 2007, 103, 070615193023005-???.	2.1	191
2	Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiology of Disease, 2008, 31, 58-73.	2.1	176
3	Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 129.	1.7	172
4	The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease. Journal of Neurochemistry, 2009, 109, 656-669.	2.1	156
5	Brain renin-angiotensin system and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 2014, 8, 67.	0.9	81
6	Interaction between <scp>NADPH</scp> â€oxidase and <scp>R</scp> hoâ€kinase in angiotensin <scp>II</scp> â€induced microglial activation. Glia, 2015, 63, 466-482.	2.5	80
7	Dopamineâ€Angiotensin interactions in the basal ganglia and their relevance for Parkinson's disease. Movement Disorders, 2013, 28, 1337-1342.	2.2	77
8	Localization and functional significance of striatal neurons immunoreactive to aromatic l-amino acid decarboxylase or tyrosine hydroxylase in rat Parkinsonian models. Brain Research, 2003, 969, 135-146.	1.1	71
9	Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease. European Journal of Neuroscience, 2010, 32, 1695-1706.	1.2	70
10	Angiotensin II increases differentiation of dopaminergic neurons from mesencephalic precursors via angiotensin type 2 receptors. European Journal of Neuroscience, 2004, 20, 1489-1498.	1.2	55
11	Aging and Sedentarism Decrease Vascularization and VEGF Levels in the Rat Substantia Nigra. Implications for Parkinson's Disease. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 230-234.	2.4	52
12	Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson's disease. Age, 2012, 34, 863-880.	3.0	46
13	Regulation of axonal development by plasma membrane gangliosides. Journal of Neurochemistry, 2007, 103, 47-55.	2.1	45
14	Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Experimental Neurology, 2013, 250, 384-396.	2.0	39
15	Striatal dopaminergic afferents concentrate in CDNF-positive patches during development and in developing intrastriatal striatal grafts. , 1999, 406, 199-206.		36
16	Reciprocal regulation between sirtuin-1 and angiotensin-II in the substantia nigra: implications for aging and neurodegeneration. Oncotarget, 2015, 6, 26675-26689.	0.8	30
17	The Mitochondrial ATP-Sensitive Potassium Channel Blocker 5-Hydroxydecanoate Inhibits Toxicity of 6-Hydroxydopamine on Dopaminergic Neurons. Neurotoxicity Research, 2009, 15, 82-95.	1.3	29
18	Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radical Biology and Medicine, 2018, 129, 394-406.	1.3	26

#	Article	IF	CITATIONS
19	Aging, Angiotensin system and dopaminergic degeneration in the substantia nigra. , 2011, 2, 257-74.		23
20	Interaction between Angiotensin Type 1, Type 2, and Mas Receptors to Regulate Adult Neurogenesis in the Brain Ventricular–Subventricular Zone. Cells, 2019, 8, 1551.	1.8	22
21	Elimination of serotonergic cells induces a marked increase in generation of dopaminergic neurons from mesencephalic precursors. European Journal of Neuroscience, 2003, 18, 2166-2174.	1.2	21
22	Brain angiotensin and dopaminergic degeneration: relevance to Parkinson's disease. American Journal of Neurodegenerative Disease, 2012, 1, 226-44.	0.1	21
23	Serotonin decreases generation of dopaminergic neurons from mesencephalic precursors via serotonin type 7 and type 4 receptors. Developmental Neurobiology, 2007, 67, 10-22.	1.5	20
24	N-Acetylcysteine enhances production of dopaminergic neurons from mesencephalic-derived precursor cells. NeuroReport, 2001, 12, 3935-3938.	0.6	18
25	Prostaglandin EP2 Receptors Mediate Mesenchymal Stromal Cell-Neuroprotective Effects on Dopaminergic Neurons. Molecular Neurobiology, 2018, 55, 4763-4776.	1.9	18
26	NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants, 2021, 10, 1649.	2.2	17
27	Laser capture microdissection protocol for gene expression analysis in the brain. Histochemistry and Cell Biology, 2017, 148, 299-311.	0.8	16
28	Locomotor-activity-induced changes in striatal levels of preprotachykinin and preproenkephalin mRNA. Regulation by the dopaminergic and glutamatergic systems. Molecular Brain Research, 1999, 70, 74-83.	2.5	15
29	Angiotensin II and interleukin-1 interact to increase generation of dopaminergic neurons from neurospheres of mesencephalic precursors. Developmental Brain Research, 2005, 158, 120-122.	2.1	15
30	2â€Benzazepine Nitrones Protect Dopaminergic Neurons against 6â€Hydroxydopamineâ€Induced Oxidative Toxicity. Archiv Der Pharmazie, 2012, 345, 598-609.	2.1	15
31	Dipyridamole-induced increase in production of rat dopaminergic neurons from mesencephalic precursors. Neuroscience Letters, 2002, 320, 65-68.	1.0	12
32	Cografting of carotid body cells improves the long-term survival, fiber outgrowth and functional effects of grafted dopaminergic neurons. Regenerative Medicine, 2012, 7, 309-322.	0.8	12
33	Effects of Rho Kinase Inhibitors on Grafts of Dopaminergic Cell Precursors in a Rat Model of Parkinson's Disease. Stem Cells Translational Medicine, 2016, 5, 804-815.	1.6	11
34	Rat brain cholinergic, dopaminergic, noradrenergic and serotonergic neurons express GABAA receptors derived from the alpha3 subunit. Receptors and Channels, 2001, 7, 471-8.	1.1	9
35	The corticostriatal system mediates the "paradoxical" contraversive rotation but not the striatal hyperexpression of Fos induced by amphetamine early after 6-hydroxydopamine lesion of the nigrostriatal pathway. Experimental Brain Research, 1998, 120, 153-163.	0.7	8
36	Morphology and neurochemistry of two striatal neuronal subtypes expressing the GABAA receptor α3-subunit in the rat. Brain Research, 2000, 876, 124-130.	1.1	8

#	Article	IF	CITATIONS
37	Host brain regulation of dopaminergic grafts function: Role of the serotonergic and noradrenergic systems in amphetamine-induced responses. Synapse, 2003, 47, 66-76.	0.6	6
38	Effects of GABA and GABA receptor inhibition on differentiation of mesencephalic precursors into dopaminergic neurons in vitro. Developmental Neurobiology, 2007, 67, 1549-1559.	1.5	6
39	Expanded mesencephalic precursors develop into grafts of densely packed dopaminergic neurons that reinnervate the surrounding striatum and induce functional responses in the striatal neurons. Synapse, 2005, 58, 13-22.	0.6	5
40	Different effects of antiâ€sonic hedgehog antibodies and the hedgehog pathway inhibitor cyclopamine on generation of dopaminergic neurons from neurospheres of mesencephalic precursors. Developmental Dynamics, 2008, 237, 909-917.	0.8	5
41	Effect of inhibitors of NADPH oxidase complex and mitochondrial ATPâ€sensitive potassium channels on generation of dopaminergic neurons from neurospheres of mesencephalic precursors. Developmental Dynamics, 2010, 239, 3247-3259.	0.8	5
42	Dopamine Regulates Adult Neurogenesis in the Ventricular-Subventricular Zone via Dopamine <scp>D3</scp> Angiotensin Type 2 Receptor Interactions. Stem Cells, 2021, 39, 1778-1794.	1.4	5
43	Mature intrastriatal striatal grafts revert the changes in the expression of pallidal and thalamic α1, α2 and β2/3 GABAA receptor subunit induced by ibotenic acid lesions in the rat striatum. Molecular Brain Research, 1998, 57, 301-309.	2.5	4
44	GABA A receptor subunit expression in intrastriatal ventral mesencephalic transplants. Experimental Brain Research, 2000, 135, 331-340.	0.7	4
45	Doseâ€dependent effect of mesenchymal stromal cells coâ€grafted with dopaminergic neurons in a Parkinson's disease rat model. Journal of Cellular and Molecular Medicine, 2021, 25, 9884-9889.	1.6	4
46	Data on the effect of Angiotensin II and 6-hydroxydopamine on reactive oxygen species production, antioxidant gene expression and viability of different neuronal cell lines. Data in Brief, 2018, 21, 934-942.	0.5	0