
Ellie Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925508/publications.pdf Version: 2024-02-01

Ειμε Τλνιλκλ

#	Article	IF	CITATIONS
1	Synergy of co-sensitizers in a copper bipyridyl redox system for efficient and cost-effective dye-sensitized solar cells in solar and ambient light. Journal of Materials Chemistry A, 2020, 8, 1279-1287.	10.3	62
2	[1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-Ï€-A Organic Sensitizers for Dye-Sensitized Solar Cells. Molecules, 2019, 24, 1588.	3.8	21
3	9-(p-Tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole—A new donor building-block in the design of sensitizers for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112333.	3.9	20
4	Polyiodide solid-state dye-sensitized solar cell produced from a standard liquid I ^{â^'} /I ₃ ^{â^'} electrolyte. Journal of Materials Chemistry A, 2020, 8, 19991-19999.	10.3	19
5	Structural features of indoline donors in D–A-ï€-A type organic sensitizers for dye-sensitized solar cells. Molecular Systems Design and Engineering, 2021, 6, 730-738.	3.4	18
6	Donor-free oligothiophene based dyes with di-anchor architecture for dye-sensitized solar cells. Molecular Systems Design and Engineering, 2021, 6, 381-389.	3.4	6
7	Structural improvement of ZnO electrodes through solution-processed routes for enhancing open-circuit voltage in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 3119-3127.	2.5	4
8	Strategies Towards Efficient and Cost-effective Dye-sensitized Solar Cells. , 0, , .		0