Yi Kuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925245/publications.pdf Version: 2024-02-01

VIKUMANC

#	Article	IF	CITATIONS
1	FePt@CoS2Yolkâ~'Shell Nanocrystals as a Potent Agent to Kill HeLa Cells. Journal of the American Chemical Society, 2007, 129, 1428-1433.	6.6	392
2	Enzyme-Instructed Molecular Self-assembly Confers Nanofibers and a Supramolecular Hydrogel of Taxol Derivative. Journal of the American Chemical Society, 2009, 131, 13576-13577.	6.6	373
3	Multifunctional Yolkâ "Shell Nanoparticles: A Potential MRI Contrast and Anticancer Agent. Journal of the American Chemical Society, 2008, 130, 11828-11833.	6.6	354
4	Aromaticâ ^ Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water To Form Nanofibers and Supramolecular Hydrogels. Journal of the American Chemical Society, 2010, 132, 2719-2728.	6.6	328
5	Pericellular Hydrogel/Nanonets Inhibit Cancer Cells. Angewandte Chemie - International Edition, 2014, 53, 8104-8107.	7.2	280
6	<scp>d</scp> -Amino Acids Boost the Selectivity and Confer Supramolecular Hydrogels of a Nonsteroidal Anti-Inflammatory Drug (NSAID). Journal of the American Chemical Society, 2013, 135, 542-545.	6.6	264
7	Supramolecular Hydrogel of a <scp>d</scp> -Amino Acid Dipeptide for Controlled Drug Release in Vivo. Langmuir, 2009, 25, 8419-8422.	1.6	257
8	Dephosphorylation of <scp>d</scp> -Peptide Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications for Intracellular Imaging and Intratumoral Chemotherapy. Journal of the American Chemical Society, 2013, 135, 9907-9914.	6.6	226
9	Versatile Small-Molecule Motifs for Self-Assembly in Water and the Formation of Biofunctional Supramolecular Hydrogels. Langmuir, 2011, 27, 529-537.	1.6	203
10	Molecular Nanofibers of Olsalazine Form Supramolecular Hydrogels for Reductive Release of an Anti-inflammatory Agent. Journal of the American Chemical Society, 2010, 132, 17707-17709.	6.6	165
11	Enzymeâ€Instructed Intracellular Molecular Selfâ€Assembly to Boost Activity of Cisplatin against Drugâ€Resistant Ovarian Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 13307-13311.	7.2	158
12	A Redox Responsive, Fluorescent Supramolecular Metallohydrogel Consists of Nanofibers with Single-Molecule Width. Journal of the American Chemical Society, 2013, 135, 5008-5011.	6.6	151
13	Supramolecular Nanofibers and Hydrogels of Nucleopeptides. Angewandte Chemie - International Edition, 2011, 50, 9365-9369.	7.2	133
14	Disruption of the Dynamics of Microtubules and Selective Inhibition of Glioblastoma Cells by Nanofibers of Small Hydrophobic Molecules. Angewandte Chemie - International Edition, 2013, 52, 6944-6948.	7.2	123
15	Multifunctional, Biocompatible Supramolecular Hydrogelators Consist Only of Nucleobase, Amino Acid, and Clycoside. Journal of the American Chemical Society, 2011, 133, 17513-17518.	6.6	115
16	Enzymeâ€instructed selfâ€assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers, 2010, 94, 19-31.	1.2	99
17	Enzymatic formation of a photoresponsive supramolecular hydrogel. Chemical Communications, 2010, 46, 5364.	2.2	99
18	Synthetic RNA-based logic computation in mammalian cells. Nature Communications, 2018, 9, 4847.	5.8	87

Yi Kuang

#	Article	IF	CITATIONS
19	MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Scientific Reports, 2016, 6, 32532.	1.6	82
20	N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Research, 2020, 48, e35-e35.	6.5	70
21	Probing Nanoscale Self-Assembly of Nonfluorescent Small Molecules inside Live Mammalian Cells. ACS Nano, 2013, 7, 9055-9063.	7.3	69
22	The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein Journal of Organic Chemistry, 2013, 9, 908-917.	1.3	63
23	Selfâ€Delivery Multifunctional Antiâ€HIV Hydrogels for Sustained Release. Advanced Healthcare Materials, 2013, 2, 1586-1590.	3.9	60
24	Efficient, Selective Removal of Human Pluripotent Stem Cells via Ecto-Alkaline Phosphatase-Mediated Aggregation of Synthetic Peptides. Cell Chemical Biology, 2017, 24, 685-694.e4.	2.5	57
25	Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics. Journal of Biological Chemistry, 2014, 289, 29208-29218.	1.6	46
26	Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine. Soft Matter, 2012, 8, 7402.	1.2	42
27	"Molecular trinity―for soft nanomaterials: integrating nucleobases, amino acids, and glycosides to construct multifunctional hydrogelators. Soft Matter, 2012, 8, 2801.	1.2	42
28	Post-Self-Assembly Cross-Linking of Molecular Nanofibers for Oscillatory Hydrogels. Langmuir, 2012, 28, 3063-3066.	1.6	41
29	Imaging Self-Assembly Dependent Spatial Distribution of Small Molecules in a Cellular Environment. Langmuir, 2013, 29, 15191-15200.	1.6	41
30	Using Congo red to report intracellular hydrogelation resulted from self-assembly of small molecules. Chemical Communications, 2007, , 4096.	2.2	40
31	In situ generated Dâ€peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death and Disease, 2017, 8, e2614-e2614.	2.7	40
32	Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells. Chemical Communications, 2011, 47, 12625.	2.2	39
33	Supramolecular Nanofibrils Inhibit Cancer Progression In Vitro and In Vivo. Advanced Healthcare Materials, 2014, 3, 1217-1221.	3.9	39
34	Active Crossâ€Linkers that Lead to Active Gels. Angewandte Chemie - International Edition, 2013, 52, 11494-11498.	7.2	36
35	Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels. Chemical Communications, 2012, 48, 2098.	2.2	34
36	The first supramolecular peptidic hydrogelator containing taurine. Chemical Communications, 2014, 50, 2772-2774.	2.2	32

Yi Kuang

#	Article	IF	CITATIONS
37	Supramolecular hydrogels based on the epitope of potassium ion channels. Chemical Communications, 2011, 47, 8772.	2.2	31
38	Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Advances, 2013, 3, 7704.	1.7	30
39	Supramolecular hydrogel of kanamycin selectively sequesters 16S rRNA. Chemical Communications, 2012, 48, 9257.	2.2	18
40	Nanonets Collect Cancer Secretome from Pericellular Space. PLoS ONE, 2016, 11, e0154126.	1.1	11
41	Aptamerâ€Arrayâ€Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
42	Aptamerâ€Arrayâ€Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angewandte Chemie, 0, , .	1.6	1
43	Biocompatibility of Hydrogelators Based on Small Peptide Derivatives. RSC Soft Matter, 2014, , 31-47.	0.2	О