Suzana Samaržija-Jovanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composites based on carbon black reinforced NBR/EPDM rubber blends. Composites Part B: Engineering, 2013, 45, 333-340.	5.9	104
2	Thermal behavior of modified urea–formaldehyde resins. Journal of Thermal Analysis and Calorimetry, 2011, 104, 1159-1166.	2.0	95
3	Nanocomposites based on silica-reinforced ethylene–propylene–diene–monomer/acrylonitrile–butadiene rubber blends. Composites Part B: Engineering, 2011, 42, 1244-1250.	5.9	60
4	Mechanical properties and thermal aging behaviour of polyisoprene/polybutadiene/styrene-butadiene rubber ternary blend reinforced with carbon black. Composites Part B: Engineering, 2016, 98, 126-133.	5.9	42
5	Ternary NR/BR/SBR rubber blend nanocomposites. Journal of Thermoplastic Composite Materials, 2018, 31, 265-287.	2.6	34
6	The kinetic and thermodynamic analyses of non-isothermal degradation process of acrylonitrile–butadiene and ethylene–propylene–diene rubbers. Composites Part B: Engineering, 2013, 45, 321-332.	5.9	31
7	Composites based on waste rubber powder and rubber blends: BR/CSM. Composites Part B: Engineering, 2013, 45, 178-184.	5.9	27
8	The effect of different types of carbon blacks on the rheological and thermal properties of acrylonitrile butadiene rubber. Journal of Thermal Analysis and Calorimetry, 2009, 98, 275-283.	2.0	26
9	The comparative kinetic analysis of non-isothermal degradation process of acrylonitrile–butadiene/ethylene–propylene–diene rubber blends reinforced with carbon black/silica fillers. Part II. Thermochimica Acta, 2012, 543, 304-312.	1.2	24
10	Gamma irradiation aging of NBR/CSM rubber nanocomposites. Composites Part B: Engineering, 2012, 43, 609-615.	5.9	22
11	Thermal stability of CR/CSM rubber blends filled with nano- and micro-silica particles. Journal of Thermal Analysis and Calorimetry, 2010, 100, 881-888.	2.0	21
12	NR/CSM/biogenic silica rubber blend composites. Composites Part B: Engineering, 2013, 55, 368-373.	5.9	18
13	Biocomposites based on cellulose and starch modified ureaâ€formaldehyde resin: Hydrolytic, thermal, and radiation stability. Polymer Composites, 2019, 40, 1287-1294.	2.3	18
14	Comparative study of radiation effect on rubber–carbon black compounds. Composites Part B: Engineering, 2014, 62, 183-190.	5.9	17
15	Thermal and vulcanization kinetic behaviour of acrylonitrile butadiene rubber reinforced by carbon black. Journal of Thermal Analysis and Calorimetry, 2008, 94, 797-803.	2.0	15
16	The comparative kinetic analysis of non-isothermal degradation process of acrylonitrile–butadiene and ethylene–propylene–diene rubber compounds. Part I. Thermochimica Acta, 2012, 543, 295-303.	1.2	14
17	Effect of γ-irradiation on the hydrolytic stability and thermo-oxidative behavior of bio/inorganic modified urea–formaldehyde resins. Composites Part B: Engineering, 2015, 69, 397-405.	5.9	14
18	Hydrolytic, thermal, and UV stability of ureaâ€formaldehyde resin/thermally activated montmorillonite nanocomposites. Polymer Composites, 2020, 41, 3575-3584.	2.3	12

#	Article	IF	CITATIONS
19	Effect of γ-irradiation on the thermo-oxidative behavior of nano-silica based urea–formaldehyde hybrid composite with 4-chloro-3-nitro-2H-chromen-2-one. Composites Part B: Engineering, 2013, 45, 864-870.	5.9	10
20	Nanosilica and wood flour-modified urea–formaldehyde composites. Journal of Thermoplastic Composite Materials, 2016, 29, 656-669.	2.6	10
21	Radiation stability and thermal behaviour of modified UF resin using biorenewable raw material-furfuryl alcohol. Composites Part B: Engineering, 2019, 167, 161-166.	5.9	10
22	Radiation stability of nanosilica-based urea–formaldehyde composite materials. Journal of Thermoplastic Composite Materials, 2013, 26, 747-761.	2.6	9
23	Curing and mechanical properties of chlorosulphonated polyethylene rubber blends. Chemical Industry and Chemical Engineering Quarterly, 2011, 17, 315-321.	0.4	8
24	Properties of Vulcanized Polyisoprene Rubber Composites Filled with Opalized White Tuff and Precipitated Silica. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	8
25	Characterization of composites based on chlorosulfonated polyethylene rubber/chlorinated natural rubber/waste rubber powder rubber blends. Journal of Thermoplastic Composite Materials, 2015, 28, 241-256.	2.6	8
26	Thermal stability of γ-irradiated chlorinated isobutylene–isoprene copolymer/chlorosulphonated polyethylene rubber blend/carbon black nanocomposites. Journal of Thermoplastic Composite Materials, 2013, 26, 1071-1081.	2.6	6
27	Nano-silica-based urea–formaldehyde composite with some derivates of coumarin as formaldehyde scavenger: hydrolytical and thermal stability. Polymer Bulletin, 2021, 78, 399-413.	1.7	5
28	Elastomers based on NR/BR/SBR ternary rubber blend: Morphological, mechanical and thermal properties. Chemical Industry and Chemical Engineering Quarterly, 2019, 25, 31-38.	0.4	5
29	Crosslinking of Polymers: Rubber Vulcanization. , 2020, , 117-134.		5
30	Hybrid materials based on brominated copolymer isobutylene isoprene/chlorosulfonated polyethylene rubber blends reinforced by nano and micro silica. Journal of Elastomers and Plastics, 2012, 44, 335-351.	0.7	4
31	Kinetic analysis of nonisothermal degradation of acrylonitrile–butadiene/ethylene–propylene–diene rubber blends reinforced with carbon black filler. Polymer Composites, 2012, 33, 1233-1243.	2.3	4
32	Modeling of Non-Linear Viscoelastic Behavior of Filled Rubbers. Advances in Polymer Science, 2014, , 193-271.	0.4	4
33	Influence of the aryl substituent identity in 4-arylamino-3-nitrocoumarins on their thermal behavior. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1619-1626.	2.0	4
34	The effect of γ-irradiation on thermal behavior of composites based on nanosilica and 4-chloro-3-nitro-2H-chromen- 2-one-modified urea–formaldehyde. Journal of Thermoplastic Composite Materials, 2014, 27, 632-649.	2.6	4
35	Polychloroprene Rubber-Based Nanoblends: Preparation, Characterization and Applications. Springer Series on Polymer and Composite Materials, 2017, , 249-279.	0.5	4
36	Hybrid materials based on rubber blend nanocomposites. Polymer Composites, 2019, 40, 3056-3064.	2.3	4

#	Article	lF	CITATIONS
37	Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size. International Journal of Adhesion and Adhesives, 2022, 115, 103131.	1.4	3
38	The influence of Î ³ radiation on the properties of elastomers based on ethylene propylene diene terpolymer and chlorosulfonated polyethylene rubber. Journal of Thermoplastic Composite Materials, 2015, 28, 1361-1372.	2.6	2
39	Ethylene–Propylene–Diene Rubber-Based Nanoblends: Preparation, Characterization and Applications. Springer Series on Polymer and Composite Materials, 2017, , 281-349.	0.5	1
40	Chlorosulfonated Rubber-Based Nanoblends: Preparation, Characterization and Applications. Springer Series on Polymer and Composite Materials, 2017, , 105-153.	0.5	1
41	The properties of elastomeric composites based on three network precursors. Polymer Composites, 2019, 40, 1307-1314.	2.3	0
42	Synthesis and characterization of pH-sensitive saccharide modified Polyurethane hydrogels: Effect of polyol, crosslinker and acid chain extender. Advanced Technologies, 2021, 10, 29-36.	0.2	0
43	Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	0
44	Thermal behavior of gamma-irradiated urea–formaldehyde composites based on the differently activated montmorillonite K10. Journal of Thermal Analysis and Calorimetry, 0, , .	2.0	0