Jun Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8925093/publications.pdf

Version: 2024-02-01

257450 377865 6,467 37 24 34 h-index citations g-index papers 41 41 41 8395 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A more efficient method to generate integration-free human iPS cells. Nature Methods, 2011, 8, 409-412.	19.0	1,736
2	Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature, 2017, 548, 592-596.	27.8	528
3	A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 3594.	3.3	511
4	Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. Journal of Clinical Investigation, 2005, 115 , 102 - 109 .	8.2	418
5	Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nature Communications, 2015, 6, 8896.	12.8	404
6	Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. Journal of Neurobiology, 1999, 38, 65-81.	3.6	384
7	Isolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation. Stem Cell Reports, 2014, 2, 337-350.	4.8	373
8	Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development (Cambridge), 2007, 134, 3213-3225.	2.5	293
9	Human Trials of Stem Cell-Derived Dopamine Neurons for Parkinson's Disease: Dawn of a New Era. Cell Stem Cell, 2017, 21, 569-573.	11.1	275
10	Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate. Stem Cell Reports, 2013, 1, 283-292.	4.8	233
11	Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinsonâ \in^{TM} s disease. Nature Communications, 2020, 11, 3369.	12.8	184
12	MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nature Communications, 2017, 8, 385.	12.8	178
13	Prolonged Maturation Culture Favors a Reduction in the Tumorigenicity and the Dopaminergic Function of Human ESCâ€Derived Neural Cells in a Primate Model of Parkinson's Disease. Stem Cells, 2012, 30, 935-945.	3.2	155
14	Smallâ€molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. Journal of Neuroscience Research, 2011, 89, 117-126.	2.9	151
15	Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development (Cambridge), 2018, 145, .	2.5	113
16	iPS cell-based therapy for Parkinson's disease: A Kyoto trial. Regenerative Therapy, 2020, 13, 18-22.	3.0	101
17	Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1. Nature Communications, 2016, 7, 13097.	12.8	83
18	Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Reports, 2020, 15, 467-481.	4.8	49

#	Article	IF	Citations
19	Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors. Stem Cells and Development, 2016, 25, 815-825.	2.1	43
20	Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeysâ€. Biology of Reproduction, 2020, 102, 620-638.	2.7	40
21	WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2016, 5, 552-560.	3.3	32
22	Stem cells and regenerative medicine for neural repair. Current Opinion in Biotechnology, 2018, 52, 102-108.	6.6	29
23	Therapeutics potentiating microglial p21-Nrf2 axis can rescue neurodegeneration caused by neuroinflammation. Science Advances, 2020, 6, .	10.3	26
24	Stem cell therapy for Parkinson's disease. Expert Review of Neurotherapeutics, 2007, 7, 667-675.	2.8	25
25	Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin $\hat{l}\pm5\hat{l}^21$. Stem Cell Reports, 2016, 6, 511-524.	4.8	21
26	X-linked severe combined immunodeficiency (X-SCID) rats for xeno-transplantation and behavioral evaluation. Journal of Neuroscience Methods, 2015, 243, 68-77.	2.5	18
27	Clinical Trial for Parkinson's Disease Gets a Green Light in the US. Cell Stem Cell, 2021, 28, 182-183.	11.1	18
28	Transplantation of Embryonic Stem Cell-Derived Dopaminergic Neurons in MPTP-Treated Monkeys. Methods in Molecular Biology, 2009, 482, 199-212.	0.9	10
29	Cryopreservation of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurospheres for Clinical Application. Journal of Parkinson's Disease, 2022, 12, 871-884.	2.8	8
30	Multiple Cerebral Arteriovenous Malformations â€"Case Reportâ€". Neurologia Medico-Chirurgica, 1993, 33, 24-27.	2.2	7
31	Preclinical evaluation of patient-derived cells shows promise for Parkinson's disease. Journal of Clinical Investigation, 2020, 130, 601-603.	8.2	7
32	Evading the Immune System: Immune Modulation and Immune Matching in Cell Replacement Therapies for Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, S167-S172.	2.8	6
33	Pretreatment with Perlecan-Conjugated Laminin-E8 Fragment Enhances Maturation of Grafted Dopaminergic Progenitors in Parkinson's Disease Model. Stem Cells Translational Medicine, 2022, 11, 767-777.	3.3	5
34	A Successful Surgical Removal of a Ventral, Midbrain, Cavernous Angioma by Using a Pterional Approach: A Case Report. Japanese Journal of Neurosurgery, 1996, 5, 308-312.	0.0	1
35	Objective and quantitative evaluation of primate model of Parkinson's disease. , 2012, , .		0
36	iPS Cell Therapy for Parkinson's Disease. Japanese Journal of Neurosurgery, 2016, 25, 489-496.	0.0	0

#	Article	IF	CITATIONS
37	Stem Cell-based Therapy for Parkinson's Disease. Japanese Journal of Neurosurgery, 2018, 27, 874-881.	0.0	0