
PurificaciÃ³n HernÃ;ndez-Orte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8924559/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture, 2000, 80, 1659-1667.	1.7	879
2	Analytical Characterization of the Aroma of Five Premium Red Wines. Insights into the Role of Odor Families and the Concept of Fruitiness of Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 4501-4510.	2.4	487
3	Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A, 2002, 966, 167-177.	1.8	431
4	Chemical Characterization of the Aroma of Grenache Rosé Wines: Aroma Extract Dilution Analysis, Quantitative Determination, and Sensory Reconstitution Studies. Journal of Agricultural and Food Chemistry, 2002, 50, 4048-4054.	2.4	349
5	Fast analysis of important wine volatile compounds. Journal of Chromatography A, 2001, 923, 205-214.	1.8	231
6	Relationship between Varietal Amino Acid Profile of Grapes and Wine Aromatic Composition. Experiments with Model Solutions and Chemometric Study. Journal of Agricultural and Food Chemistry, 2002, 50, 2891-2899.	2.4	217
7	Prediction of the Wine Sensory Properties Related to Grape Variety from Dynamic-Headspace Gas Chromatographyâ ''Olfactometry Data. Journal of Agricultural and Food Chemistry, 2005, 53, 5682-5690.	2.4	183
8	Release and Formation of Varietal Aroma Compounds during Alcoholic Fermentation from Nonfloral Grape Odorless Flavor Precursors Fractions. Journal of Agricultural and Food Chemistry, 2007, 55, 6674-6684.	2.4	181
9	Clues about the Role of Methional As Character Impact Odorant of Some Oxidized Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 4268-4272.	2.4	170
10	Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: a comparative study. Journal of the Science of Food and Agriculture, 1999, 79, 1461-1467.	1.7	154
11	Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: Potential applications in the wine industry. International Journal of Food Microbiology, 2009, 134, 201-210.	2.1	141
12	Investigation on the role played by fermentation esters in the aroma of young Spanish wines by multivariate analysis. Journal of the Science of Food and Agriculture, 1995, 67, 381-392.	1.7	139
13	Quality and Aromatic Sensory Descriptors (Mainly Fresh and Dry Fruit Character) of Spanish Red Wines can be Predicted from their Aroma-Active Chemical Composition. Journal of Agricultural and Food Chemistry, 2011, 59, 7916-7924.	2.4	130
14	Concurrent Phenomena Contributing to the Formation of the Aroma of Wine during Aging in Oak Wood:Â An Analytical Study. Journal of Agricultural and Food Chemistry, 2005, 53, 4166-4177.	2.4	117
15	Optimization and evaluation of a procedure for the gas chromatographic–mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavor precursors extracted from grapes. Journal of Chromatography A, 2006, 1116, 217-229.	1.8	112
16	Analysis of the aroma intensities of volatile compounds released from mild acid hydrolysates of odourless precursors extracted from Tempranillo and Grenache grapes using gas chromatography-olfactometry. Food Chemistry, 2004, 88, 95-103.	4.2	105
17	Analysis, Occurrence, and Potential Sensory Significance of Five Polyfunctional Mercaptans in White Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 10184-10194.	2.4	91
18	Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Australian Journal of Grape and Wine Research, 2006, 12, 150-160.	1.0	88

#	Article	IF	CITATIONS
19	Quantitative determination of wine highly volatile sulfur compounds by using automated headspace solid-phase microextraction and gas chromatography-pulsed flame photometric detection. Journal of Chromatography A, 2007, 1143, 8-15.	1.8	86
20	Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT - Food Science and Technology, 2009, 42, 1225-1231.	2.5	83
21	Aroma Chemical Composition of Red Wines from Different Price Categories and Its Relationship to Quality. Journal of Agricultural and Food Chemistry, 2012, 60, 5045-5056.	2.4	81
22	Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Research International, 2010, 43, 761-766.	2.9	80
23	The Chemical Characterization of the Aroma of Dessert and Sparkling White Wines (Pedro Ximénez,) Tj ETQq1 Journal of Agricultural and Food Chemistry, 2008, 56, 2477-2484.	1 0.78431 2.4	l4 rgBT /O∨ 77
24	The Actual and Potential Aroma of Winemaking Grapes. Biomolecules, 2019, 9, 818.	1.8	75
25	Comparison of the Suitability of Different Hydrolytic Strategies To Predict Aroma Potential of Different Grape Varieties. Journal of Agricultural and Food Chemistry, 2009, 57, 2468-2480.	2.4	70
26	S-Cysteinylated and S-glutathionylated thiol precursors in grapes. A review. Food Chemistry, 2012, 131, 1-13.	4.2	68
27	Quantitative analysis of free and bonded forms of volatile sulfur compouds in wine. Basic methodologies and evidences showing the existence of reversible cation-complexed forms. Journal of Chromatography A, 2014, 1359, 8-15.	1.8	64
28	Glycosidically Bound Aroma Compounds and Impact Odorants of Four Strawberry Varieties. Journal of Agricultural and Food Chemistry, 2012, 60, 6095-6102.	2.4	61
29	Characterization by gas chromatography–olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods. LWT - Food Science and Technology, 2013, 53, 240-248.	2.5	58
30	Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 608-617.	2.4	58
31	Quantitative determination of wine polyfunctional mercaptans at nanogram per liter level by gas chromatography–negative ion mass spectrometric analysis of their pentafluorobenzyl derivatives. Journal of Chromatography A, 2007, 1146, 242-250.	1.8	57
32	Semipreparative reversed-phase liquid chromatographic fractionation of aroma extracts from wine and other alcoholic beverages. Journal of Chromatography A, 1999, 864, 77-88.	1.8	56
33	Producing headspace extracts for the gas chromatography–olfactometric evaluation of wine aroma. Food Chemistry, 2010, 123, 188-195.	4.2	54
34	Determination of the biogenic amines in musts and wines before and after malolactic fermentation using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the derivatizing agent. Journal of Chromatography A, 2006, 1129, 160-164.	1.8	52
35	Sensory and Chemical Characterization of the Aroma of a White Wine Made with DevÃn Grapes. Journal of Agricultural and Food Chemistry, 2006, 54, 909-915.	2.4	51
36	Sensory and chemical characterisation of the aroma of Prieto Picudo rosé wines: The differential role of autochthonous yeast strains on aroma profiles. Food Chemistry, 2012, 133, 284-292.	4.2	50

#	Article	IF	CITATIONS
37	Key Changes in Wine Aroma Active Compounds during Bottle Storage of Spanish Red Wines under Different Oxygen Levels. Journal of Agricultural and Food Chemistry, 2014, 62, 10015-10027.	2.4	48
38	Biogenic amine determination in wines using solid-phase extraction: A comparative study. Journal of Chromatography A, 2009, 1216, 3398-3401.	1.8	47
39	Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation. Frontiers in Chemistry, 2018, 6, 20.	1.8	46
40	Influence of viticulture practices on grape aroma precursors and their relation with wine aroma. Journal of the Science of Food and Agriculture, 2015, 95, 688-701.	1.7	44
41	High-Performance Liquid Chromatography Analysis of Amines in Must and Wine: A Review. Food Reviews International, 2012, 28, 71-96.	4.3	43
42	Gas chromatography-mass spectrometry strategies for the accurate and sensitive speciation of sulfur dioxide in wine. Journal of Chromatography A, 2017, 1504, 27-34.	1.8	43
43	Reductive off-odors in wines: Formation and release of H2S and methanethiol during the accelerated anoxic storage of wines. Food Chemistry, 2016, 199, 42-50.	4.2	42
44	Changes in analytical and volatile compositions of red wines induced by pre-fermentation heat treatment of grapes. Food Chemistry, 2015, 187, 243-253.	4.2	39
45	Formation and Release of H ₂ S, Methanethiol, and Dimethylsulfide during the Anoxic Storage of Wines at Room Temperature. Journal of Agricultural and Food Chemistry, 2016, 64, 6317-6326.	2.4	39
46	Effect of aromatic precursor addition to wine fermentations carried out with different Saccharomyces species and their hybrids. International Journal of Food Microbiology, 2011, 147, 33-44.	2.1	38
47	The effects of copper fining on the wine content in sulfur off-odors and on their evolution during accelerated anoxic storage. Food Chemistry, 2017, 231, 212-221.	4.2	35
48	Elusive Chemistry of Hydrogen Sulfide and Mercaptans in Wine. Journal of Agricultural and Food Chemistry, 2018, 66, 2237-2246.	2.4	35
49	Modulating Fermentative, Varietal and Aging Aromas of Wine Using non-Saccharomyces Yeasts in a Sequential Inoculation Approach. Microorganisms, 2019, 7, 164.	1.6	35
50	Study of the effect of H 2 S, MeSH and DMS on the sensory profile of wine model solutions by Rate-All-That-Apply (RATA). Food Research International, 2016, 87, 152-160.	2.9	33
51	Criteria to discriminate between wines aged in oak barrels and macerated with oak fragments. Food Research International, 2014, 57, 234-241.	2.9	31
52	Oxygen and SO ₂ Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition. Journal of Agricultural and Food Chemistry, 2017, 65, 9488-9495.	2.4	28
53	Micro-oxygenation does not eliminate hydrogen sulfide and mercaptans from wine; it simply shifts redox and complex-related equilibria to reversible oxidized species and complexed forms. Food Chemistry, 2018, 243, 222-230.	4.2	28
54	Influence of pulsed electric fields on aroma and polyphenolic compounds of Garnacha wine. Food and Bioproducts Processing, 2019, 116, 249-257.	1.8	23

PURIFICACIÃ³N

#	Article	IF	CITATIONS
55	Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma. Foods, 2020, 9, 1892.	1.9	23
56	Biogenic amine synthesis in high quality Tempranillo wines. Relationship with lactic acid bacteria and vinification conditions. Annals of Microbiology, 2011, 61, 191-198.	1.1	21
57	Fate of Grape Flavor Precursors during Storage on Yeast Lees. Journal of Agricultural and Food Chemistry, 2009, 57, 5468-5479.	2.4	20
58	Rapid sensory-directed methodology for the selection of high-quality aroma wines. Journal of the Science of Food and Agriculture, 2016, 96, 4250-4262.	1.7	19
59	Evolution of polyfunctional mercaptans and their precursors during Merlot alcoholic fermentation. LWT - Food Science and Technology, 2016, 65, 770-776.	2.5	18
60	Rapid strategies for the determination of sensory and chemical differences between a wealth of similar wines. European Food Research and Technology, 2017, 243, 1295-1309.	1.6	18
61	Development of a new strategy for studying the aroma potential of winemaking grapes through the accelerated hydrolysis of phenolic and aromatic fractions (PAFs). Food Research International, 2020, 127, 108728.	2.9	18
62	Effect of grape maturity on wine sensory and chemical features: The case of Moristel wines. LWT - Food Science and Technology, 2020, 118, 108848.	2.5	18
63	Modulating analytical characteristics of thermovinified Carignan musts and the volatile composition of the resulting wines through the heating temperature. Food Chemistry, 2018, 257, 7-14.	4.2	17
64	Sensory, olfactometric and chemical characterization of the aroma potential of Garnacha and Tempranillo winemaking grapes. Food Chemistry, 2020, 331, 127207.	4.2	17
65	Direct accurate analysis of cysteinylated and glutathionylated precursors of 4-mercapto-4-methyl-2-pentanone and 3-mercaptohexan-1-ol in must by ultrahigh performance liquid chromatography coupled to mass spectrometry. Analytica Chimica Acta, 2014, 812, 250-257.	2.6	15
66	Effect of Bentonite Fining on Polyfunctional Mercaptans and Other Volatile Compounds in Sauvignon blanc Wines. American Journal of Enology and Viticulture, 2017, 68, 30-38.	0.9	15
67	Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. Journal of Chromatography A, 2019, 1596, 152-160.	1.8	14
68	Study of the influence of varietal amino acid profiles on the polyfunctional mercaptans released from their precursors. Food Research International, 2017, 100, 740-747.	2.9	13
69	Modulation of aroma and chemical composition of Albariño semi-synthetic wines by non-wine Saccharomyces yeasts and bottle aging. Food Microbiology, 2022, 104, 103981.	2.1	13
70	Effect of maceration time and the addition of enzymes on the amino acid composition of musts and wines and its influence on wine aroma Influencia del tiempo de maceraciÃ ³ n y de la adiciÃ ³ n de enzimas sobre la composiciÃ ³ n de los aminoácidos de mostos y vinos y su relaciÃ ³ n con el aroma. Food Science and Technology International, 1998, 4, 407-418.	1.1	12
71	Amino acids and volatile compounds in wines from <i>Cabernet Sauvignon</i> and <i>Tempranillo</i> varieties subjected to malolactic fermentation in barrels. Food Science and Technology International, 2012, 18, 103-112.	1.1	11
72	Is orthonasal olfaction an equilibrium driven process? Design and validation of a dynamic purge and trap system for the study of orthonasal wine aroma. Flavour and Fragrance Journal, 2014, 29, 296-304.	1.2	10

#	Article	IF	CITATIONS
73	Modeling grape taste and mouthfeel from chemical composition. Food Chemistry, 2022, 371, 131168.	4.2	10
74	The Instrumental Analysis of Aroma-Active Compounds for Explaining the Flavor of Red Wines. , 2019, , 283-307.		9
75	Generation of intra―and interspecific <i>Saccharomyces</i> hybrids with improved oenological and aromatic properties. Microbial Biotechnology, 2022, 15, 2266-2280.	2.0	9
76	Aroma compounds and sensory characteristics of Arneis Terre Alfieri DOC wines: the concentration of polyfunctional thiols and their evolution in relation to different ageing conditions. European Food Research and Technology, 2014, 239, 267-277.	1.6	8
77	The effects of Saccharomyces cerevisiae strains carrying alcoholic fermentation on the fermentative and varietal aroma profiles of young and aged Tempranillo wines. Food Chemistry: X, 2021, 9, 100116.	1.8	6
78	Effect of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas in semi-synthetic Tempranillo wines. International Journal of Food Microbiology, 2022, 365, 109554.	2.1	6
79	How does the addition of antioxidants and other sulfur compounds affect the metabolism of polyfunctional mercaptan precursors in model fermentations?. Food Research International, 2019, 122, 1-9.	2.9	5
80	Wine, Beer and Cider: Unravelling the Aroma Profile. , 2014, , 261-297.		5
81	Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation. Journal of Agricultural and Food Chemistry, 2021, 69, 15290-15300.	2.4	4
82	Maturation of Moristel in Different Vineyards: Amino Acid and Aroma Composition of Mistelles and Wines with Particular Emphasis in Strecker Aldehydes. Foods, 2022, 11, 958.	1.9	2