Hervé Sentenac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8924361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit <i>AtKC1</i> . Plant Cell, 2022, 34, 2019-2037.	6.6	18
2	The outward shaker channel OsK5.2 improves plant salt tolerance by contributing to control of both leaf transpiration and K ⁺ secretion into xylem sap. Plant, Cell and Environment, 2022, 45, 1734-1748.	5.7	2
3	Constitutive Contribution by the Rice OsHKT1;4 Na+ Transporter to Xylem Sap Desalinization and Low Na+ Accumulation in Young Leaves Under Low as High External Na+ Conditions. Frontiers in Plant Science, 2020, 11, 1130.	3.6	22
4	Functional characterization and physiological roles of the single Shaker outward K ⁺ channel in <i>Medicago truncatula</i> . Plant Journal, 2020, 102, 1249-1265.	5.7	11
5	A repertoire of cationic and anionic conductances at the plasma membrane of Medicago truncatula root hairs. Plant Journal, 2019, 98, 418-433.	5.7	8
6	A Dual Role for the OsK5.2 Ion Channel in Stomatal Movements and K ⁺ Loading into Xylem Sap. Plant Physiology, 2017, 174, 2409-2418.	4.8	44
7	Production of lowâ€Cs ⁺ rice plants by inactivation of the K ⁺ transporter Os <scp>HAK</scp> 1 with the <scp>CRISPR</scp> â€Cas system. Plant Journal, 2017, 92, 43-56.	5.7	161
8	Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks. Frontiers in Plant Science, 2016, 7, 794.	3.6	55
9	Characterization of Two HKT1;4 Transporters from <i>Triticum monococcum</i> to Elucidate the Determinants of the Wheat Salt Tolerance <i>Nax1</i> QTL. Plant and Cell Physiology, 2016, 57, 2047-2057.	3.1	40
10	Roles and Transport of Sodium and Potassium in Plants. Metal Ions in Life Sciences, 2016, 16, 291-324.	2.8	86
11	Acetylated 1,3â€diaminopropane antagonizes abscisic acidâ€mediated stomatal closing in <scp>A</scp> rabidopsis. Plant Journal, 2014, 79, 322-333.	5.7	43
12	Distinct Amino Acids in the C-Linker Domain of the Arabidopsis K+ Channel KAT2 Determine Its Subcellular Localization and Activity at the Plasma Membrane Â. Plant Physiology, 2014, 164, 1415-1429.	4.8	31
13	Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species?. Journal of Plant Physiology, 2014, 171, 748-769.	3.5	264
14	Potassium transport in developing fleshy fruits: the grapevine inward K ⁺ channel VvK1.2 is activated by <scp>CIPK</scp> – <scp>CBL</scp> complexes and induced in ripening berry flesh cells. Plant Journal, 2013, 73, 1006-1018.	5.7	80
15	The Rice Monovalent Cation Transporter OsHKT2;4: Revisited Ionic Selectivity Â. Plant Physiology, 2012, 160, 498-510.	4.8	80
16	HKT2;2/1, a K ⁺ â€permeable transporter identified in a saltâ€tolerant rice cultivar through surveys of natural genetic polymorphism. Plant Journal, 2012, 71, 750-762.	5.7	94
17	AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity. Plant Journal, 2011, 67, 570-582.	5.7	83
18	Overâ€expression of an Na ⁺ ―and K ⁺ â€permeable HKT transporter in barley improves salt tolerance. Plant Journal, 2011, 68, 468-479.	5.7	256

Hervé Sentenac

#	Article	IF	CITATIONS
19	A grapevine Shaker inward K ⁺ channel activated by the calcineurin B-like calcium sensor 1A¢Â€Â"protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant Journal, 2010, 61, 58-69.	5.7	135
20	Diversity in Expression Patterns and Functional Properties in the Rice HKT Transporter Family Â. Plant Physiology, 2009, 150, 1955-1971.	4.8	175
21	AtKC1, a conditionally targeted Shakerâ€type subunit, regulates the activity of plant K ⁺ channels. Plant Journal, 2008, 53, 115-123.	5.7	107
22	Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5271-5276.	7.1	138
23	Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 2006, 11, 372-374.	8.8	329
24	External K+modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant Journal, 2006, 46, 269-281.	5.7	138
25	Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant Journal, 2005, 44, 783-797.	5.7	81
26	A Unique Voltage Sensor Sensitizes the Potassium Channel AKT2 to Phosphoregulation. Journal of General Physiology, 2005, 126, 605-617.	1.9	54
27	Regulation by External K+ in a Maize Inward Shaker Channel Targets Transport Activity in the High Concentration Range. Plant Cell, 2005, 17, 1532-1548.	6.6	33
28	Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal, 2003, 22, 2004-2014.	7.8	512
29	Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology, 2003, 51, 773-787.	3.9	221
30	MOLECULARMECHANISMS ANDREGULATION OFK+TRANSPORT INHIGHERPLANTS. Annual Review of Plant Biology, 2003, 54, 575-603.	18.7	530
31	Five-Group Distribution of the Shaker-like K + Channel Family in Higher Plants. Journal of Molecular Evolution, 2003, 56, 418-434.	1.8	98
32	The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5549-5554.	7.1	388
33	Cation channels in the Arabidopsis plasma membrane. Trends in Plant Science, 2002, 7, 168-175.	8.8	181
34	Guard Cell Inward K+ Channel Activity inArabidopsis Involves Expression of the Twin Channel Subunits KAT1 and KAT2. Journal of Biological Chemistry, 2001, 276, 3215-3221.	3.4	217
35	Biochemical characterization of the Arabidopsis K+ channels KAT1 and AKT1 expressed or co-expressed in insect cells. Plant Journal, 2000, 23, 527-538.	5.7	39
36	A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837-851.	6.6	196

Hervé Sentenac

#	Article	IF	CITATIONS
37	A Shaker-Like K + Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837.	6.6	120
38	Identification and Disruption of a Plant Shaker-like Outward Channel Involved in K+ Release into the Xylem Sap. Cell, 1998, 94, 647-655.	28.9	676
39	Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant Journal, 1995, 7, 321-332.	5.7	167