Chengxi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8924286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile way to improve zeolite Y-based catalysts' properties and performance in the isobutane–butene alkylation reaction. RSC Advances, 2020, 10, 29068-29076.	1.7	9
2	Effect of Particle Size of Al ₂ O ₃ Binders on Acidity and Isobutane–Butene Alkylation Performance of Zeolite Y-Based Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 5576-5582.	1.8	14
3	Selectivity Control on Hydrogenation of Substituted Nitroarenes through Endâ€On Adsorption of Reactants in Zeoliteâ€Encapsulated Platinum Nanoparticles. Chemistry - an Asian Journal, 2018, 13, 2077-2084.	1.7	24
4	Particle size effect and structure-function relationship of Ni-based steam reforming catalysts. Chinese Science Bulletin, 2015, 60, 3230-3238.	0.4	1
5	Glycerol steam reforming over perovskite-derived nickel-based catalysts. Applied Catalysis B: Environmental, 2014, 144, 277-285.	10.8	141
6	Steam reforming of ethanol over skeletal Niâ€based catalysts: A temperature programmed desorption and kinetic study. AICHE Journal, 2014, 60, 635-644.	1.8	38
7	Synthesis of stable Ni-CeO2 catalysts via ball-milling for ethanol steam reforming. Catalysis Today, 2014, 233, 53-60.	2.2	59
8	Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect. Chemical Communications, 2013, 49, 9383.	2.2	101
9	Au/carbon as Fenton-like catalysts for the oxidative degradation of bisphenol A. Applied Catalysis B: Environmental, 2013, 134-135, 145-152.	10.8	111
10	Hydrogen Production via Steam Reforming of Ethanol on Phyllosilicate-Derived Ni/SiO ₂ : Enhanced Metal–Support Interaction and Catalytic Stability. ACS Sustainable Chemistry and Engineering, 2013, 1, 161-173.	3.2	167
11	Pt-based core–shell nanocatalysts with enhanced activity and stability for CO oxidation. Chemical Communications, 2013, 49, 10647.	2.2	30
12	A Ni@ZrO ₂ nanocomposite for ethanol steam reforming: enhanced stability via strong metal–oxide interaction. Chemical Communications, 2013, 49, 4226-4228.	2.2	112
13	N-doped Ag/TiO ₂ hollow spheres for highly efficient photocatalysis under visible-light irradiation. RSC Advances, 2013, 3, 720-724.	1.7	52
14	Hydrogen Production via Glycerol Steam Reforming over Ni/Al ₂ O ₃ : Influence of Nickel Precursors. ACS Sustainable Chemistry and Engineering, 2013, 1, 1052-1062.	3.2	164
15	Superior reactivity of skeletal Ni-based catalysts for low-temperature steam reforming to produce CO-free hydrogen. Physical Chemistry Chemical Physics, 2012, 14, 3295.	1.3	34
16	On the origin of reactivity of steam reforming of ethylene glycol on supported Ni catalysts. Physical Chemistry Chemical Physics, 2012, 14, 4066.	1.3	37
17	Sorption enhanced steam reforming of ethanol on Ni–CaO–Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds. Energy and Environmental Science, 2012, 5, 8942.	15.6	168
18	Mechanistic insights into methanolâ€ŧoâ€olefin reaction on an αâ€Mn ₂ O ₃ nanocrystal catalyst. AICHE Journal, 2012, 58, 3474-3481.	1.8	5

#	Article	IF	CITATIONS
19	Steam reforming of ethanol over Ni/ZrO2 catalysts: Effect of support on product distribution. International Journal of Hydrogen Energy, 2012, 37, 2940-2949.	3.8	81
20	Enhanced oxygen mobility and reactivity for ethanol steam reforming. AICHE Journal, 2012, 58, 516-525.	1.8	70
21	Ethanol steam reforming over Ni/NixMg1â°'xO: Inhibition of surface nickel species diffusion into the bulk. International Journal of Hydrogen Energy, 2011, 36, 326-332.	3.8	18