Russell T Hepple

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8923854/publications.pdf

Version: 2024-02-01

106	5,788	42	73
papers	citations	h-index	g-index
110	110	110	7200
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. Cell Metabolism, 2015, 22, 4-11.	16.2	345
2	Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metabolism, 2016, 23, 1034-1047.	16.2	335
3	Mitochondrial Structure and Function Are Disrupted by Standard Isolation Methods. PLoS ONE, 2011, 6, e18317.	2.5	247
4	Innervation and neuromuscular control in ageing skeletal muscle. Journal of Physiology, 2016, 594, 1965-1978.	2.9	242
5	Denervation Causes Fiber Atrophy and Myosin Heavy Chain Co-Expression in Senescent Skeletal Muscle. PLoS ONE, 2012, 7, e29082.	2.5	194
6	Mitochondria: isolation, structure and function. Journal of Physiology, 2011, 589, 4413-4421.	2.9	193
7	Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell, 2010, 9, 1032-1046.	6.7	186
8	Resistance and aerobic training in older men: effects onVË™ <scp>o</scp> _{2 peak} and the capillary supply to skeletal muscle. Journal of Applied Physiology, 1997, 82, 1305-1310.	2.5	172
9	Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function. American Journal of Physiology - Cell Physiology, 2012, 302, C629-C641.	4.6	170
10	Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB Journal, 2014, 28, 1621-1633.	0.5	159
11	Alterations in intrinsic mitochondrial function with aging are fiber typeâ€specific and do not explain differential atrophy between muscles. Aging Cell, 2011, 10, 1047-1055.	6.7	120
12	Determinants of $\langle i \rangle V \langle i \rangle O \langle sub \rangle 2$ max $\langle sub \rangle decline$ with aging: an integrated perspective. Applied Physiology, Nutrition and Metabolism, 2008, 33, 130-140.	1.9	117
13	Mitochondrial Involvement and Impact in Aging Skeletal Muscle. Frontiers in Aging Neuroscience, 2014, 6, 211.	3.4	115
14	The impact of ageing, physical activity, and preâ€frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 213-228.	7.3	106
15	The Relationship between Muscle Fiber Type-Specific PGC-1α Content and Mitochondrial Content Varies between Rodent Models and Humans. PLoS ONE, 2014, 9, e103044.	2.5	104
16	Fiber Typing in Aging Muscle. Exercise and Sport Sciences Reviews, 2014, 42, 45-52.	3.0	93
17	Caloric Restriction Protects Mitochondrial Function with Aging in Skeletal and Cardiac Muscles. Rejuvenation Research, 2006, 9, 219-222.	1.8	88
18	Skeletal Muscle Aging in F344BN F1-Hybrid Rats: I. Mitochondrial Dysfunction Contributes to the Age-Associated Reduction in VO2max. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, 1099-1110.	3.6	85

#	Article	IF	Citations
19	Structural basis of muscle O2 diffusing capacity: evidence from muscle function in situ. Journal of Applied Physiology, 2000, 88, 560-566.	2.5	84
20	No Decline in Skeletal Muscle Oxidative Capacity With Aging in Long-Term Calorically Restricted Rats: Effects Are Independent of Mitochondrial DNA Integrity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 675-684.	3.6	77
21	Failed reinnervation in aging skeletal muscle. Skeletal Muscle, 2016, 6, 29.	4.2	75
22	Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2705-2710.	7.1	73
23	A New Measurement of Tissue Capillarity: The Capillary-to-Fibre Perimeter Exchange Index. Applied Physiology, Nutrition, and Metabolism, 1997, 22, 11-22.	1.7	72
24	Protective role of Parkin in skeletal muscle contractile and mitochondrial function. Journal of Physiology, 2018, 596, 2565-2579.	2.9	72
25	Motor unit number and transmission stability in octogenarian world class athletes: Can age-related deficits be outrun?. Journal of Applied Physiology, 2016, 121, 1013-1020.	2.5	70
26	Caloric restriction optimizes the proteasome pathway with aging in rat plantaris muscle: implications for sarcopenia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1231-R1237.	1.8	69
27	Longâ€term caloric restriction abrogates the ageâ€related decline in skeletal muscle aerobic function. FASEB Journal, 2005, 19, 1320-1322.	0.5	68
28	Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. Journal of Physiology, 2016, 594, 7361-7379.	2.9	68
29	Fidelity of muscle fibre reinnervation modulates ageing muscle impact in elderly women. Journal of Physiology, 2019, 597, 5009-5023.	2.9	62
30	Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R544-R553.	1.8	60
31	Autophagic flux and oxidative capacity of skeletal muscles during acute starvation. Autophagy, 2013, 9, 1604-1620.	9.1	59
32	Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Scientific Reports, 2015, 5, 8717.	3.3	59
33	Aerobic power declines with aging in rat skeletal muscles perfused at matched convective O ₂ delivery. Journal of Applied Physiology, 2003, 94, 744-751.	2.5	58
34	Impact of aging on mitochondrial function in cardiac and skeletal muscle. Free Radical Biology and Medicine, 2016, 98, 177-186.	2.9	54
35	Estimating the size of the capillary-to-fiber interface in skeletal muscle: a comparison of methods. Journal of Applied Physiology, 2001, 91, 2150-2156.	2.5	52
36	The Role of O ₂ Supply in Muscle Fatigue. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 56-69.	1.7	52

#	Article	IF	Citations
37	Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity. Physiological Genomics, 2013, 45, 17-25.	2.3	51
38	Skeletal muscle: microcirculatory adaptation to metabolic demand. Medicine and Science in Sports and Exercise, 2000, 32, 117.	0.4	49
39	Impaired muscle mitochondrial energetics is associated with uremic metabolite accumulation in chronic kidney disease. JCI Insight, 2021, 6, .	5.0	47
40	Reduction in single muscle fiber rate of force development with aging is not attenuated in world class older masters athletes. American Journal of Physiology - Cell Physiology, 2016, 310, C318-C327.	4.6	46
41	Fiber Atrophy and Hypertrophy in Skeletal Muscles of Late Middle-Aged Fischer 344 x Brown Norway F1-Hybrid Rats. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B108-B117.	3.6	45
42	Exercise training from late middle age until senescence does not attenuate the declines in skeletal muscle aerobic function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R744-R755.	1.8	45
43	Sarcopenia-A Critical Perspective. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, pe31.	0.8	45
44	Accumulation of severely atrophic myofibers marks the acceleration of sarcopenia in slow and fast twitch muscles. Experimental Gerontology, 2011, 46, 660-9.	2.8	43
45	Anatomic capillarization is maintained in relative excess of fiber oxidative capacity in some skeletal muscles of late middle-aged rats. Journal of Applied Physiology, 2004, 96, 2257-2264.	2.5	42
46	Adaptations in Capillarization and Citrate Synthase Activity in Response to Endurance Training in Older and Young Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 957-964.	3.6	41
47	Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats. Experimental Gerontology, 2014, 50, 9-18.	2.8	41
48	Eccentric Ergometer Training Promotes Locomotor Muscle Strength but Not Mitochondrial Adaptation in Patients with Severe Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 2017, 8, 114.	2.8	40
49	Mitochondrial Mechanisms of Neuromuscular Junction Degeneration with Aging. Cells, 2020, 9, 197.	4.1	38
50	Failed upregulation of TFAM protein and mitochondrial DNA in oxidatively deficient fibers of chronic obstructive pulmonary disease locomotor muscle. Skeletal Muscle, 2016, 6, 10.	4.2	37
51	Muscle Structural Capacity for Oxygen Flux from Capillary to Fiber Mitochondria. Exercise and Sport Sciences Reviews, 2002, 30, 80-84.	3.0	36
52	Skeletal Muscle Aging in F344BN F1-Hybrid Rats: II. Improved Contractile Economy in Senescence Helps Compensate for Reduced ATP-Generating Capacity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, 1111-1119.	3.6	36
53	Elevated caspase and AIF gene expression correlate with progression of sarcopenia during aging in male F344BN rats. Experimental Gerontology, 2006, 41, 1149-1156.	2.8	36
54	Slow twitch soleus muscle is not protected from sarcopenia in senescent rats. Experimental Gerontology, 2010, 45, 662-670.	2.8	35

#	Article	IF	CITATIONS
55	Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Experimental Gerontology, 2013, 48, 1075-1084.	2.8	35
56	Differential sensitivities of cerebral and brachial blood flow to hypercapnia in humans. Journal of Applied Physiology, 2007, 102, 87-93.	2.5	34
57	Smokeâ€induced neuromuscular junction degeneration precedes the fibre type shift and atrophy in chronic obstructive pulmonary disease. Journal of Physiology, 2018, 596, 2865-2881.	2.9	34
58	Selected Contribution: Bone adaptation with aging and long-term caloric restriction in Fischer 344 ×Brown-Norway F1-hybrid rats. Journal of Applied Physiology, 2003, 95, 1739-1745.	2.5	33
59	Oxidative capacity interacts with oxygen delivery to determine maximal O2uptake in rat skeletal musclesin situ. Journal of Physiology, 2002, 541, 1003-1012.	2.9	31
60	Severe atrophy of slow myofibers in aging muscle is concealed by myosin heavy chain co-expression. Experimental Gerontology, 2012, 47, 913-918.	2.8	31
61	Skeletal muscle: master or slave of the cardiovascular system?. Medicine and Science in Sports and Exercise, 2000, 32, 89.	0.4	30
62	Reduced Mitochondrial Content, Elevated Reactive Oxygen Species, and Modulation by Denervation in Skeletal Muscle of Prefrail or Frail Elderly Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1887-1895.	3.6	30
63	Muscle atrophy is not always sarcopenia. Journal of Applied Physiology, 2012, 113, 677-679.	2.5	28
64	Editorial: Mitochondria in Skeletal Muscle Health, Aging and Diseases. Frontiers in Physiology, 2016, 7, 446.	2.8	28
65	Increased capillarity in leg muscle of finches living at altitude. Journal of Applied Physiology, 1998, 85, 1871-1876.	2.5	27
66	Initiating treadmill training in late middle age offers modest adaptations in Ca ²⁺ handling but enhances oxidative damage in senescent rat skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1269-R1278.	1.8	27
67	Exercise training in late middleâ€aged male Fischer 344 × Brown Norway F1â€hybrid rats improves skeletal muscle aerobic function. Experimental Physiology, 2008, 93, 863-871.	2.0	26
68	The O2 cost of the tension-time integral in isolated single myocytes during fatigue. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R983-R988.	1.8	26
69	Anatomic capillarization is elevated in the medial gastrocnemius muscle of mighty mini mice. Journal of Applied Physiology, 2009, 106, 1660-1667.	2.5	25
70	Rapid force recovery in contracting skeletal muscle after brief ischemia is dependent on O ₂ availability. Journal of Applied Physiology, 1999, 87, 2225-2229.	2.5	24
71	Effects of Aging and Caloric Restriction on Bone Structure and Mechanical Properties. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 1131-1136.	3.6	24
72	Role of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC- $1\hat{l}\pm$) in denervation-induced atrophy in aged muscle: facts and hypotheses. Longevity & Healthspan, 2013, 2, 13.	6.7	24

#	Article	IF	CITATIONS
73	Mitochondrial Function in Permeabilized Cardiomyocytes Is Largely Preserved in the Senescent Rat Myocardium. PLoS ONE, 2012, 7, e43003.	2.5	24
74	Why Eating Less Keeps Mitochondria Working in Aged Skeletal Muscle. Exercise and Sport Sciences Reviews, 2009, 37, 23-28.	3.0	21
75	Initiating exercise training in late middle age minimally protects muscle contractile function and increases myocyte oxidative damage in senescent rats. Experimental Gerontology, 2010, 45, 856-867.	2.8	21
76	Colon 26 adenocarcinoma (C26)-induced cancer cachexia impairs skeletal muscle mitochondrial function and content. Journal of Muscle Research and Cell Motility, 2019, 40, 59-65.	2.0	21
77	Chronic aryl hydrocarbon receptor activity phenocopies smokingâ€induced skeletal muscle impairment. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 589-604.	7. 3	19
78	When motor unit expansion in ageing muscle fails, atrophy ensues. Journal of Physiology, 2018, 596, 1545-1546.	2.9	17
79	V̇o2 max is unaffected by altering the temporal pattern of stimulation frequency in rat hindlimb in situ. Journal of Applied Physiology, 2003, 95, 705-711.	2.5	15
80	Cardiac calcium pump inactivation and nitrosylation in senescent rat myocardium are not attenuated by long-term treadmill training. Experimental Gerontology, 2011, 46, 803-810.	2.8	15
81	Dissociation of peak vascular conductance andVË™ <scp>o</scp> _{2 max} among highly trained athletes. Journal of Applied Physiology, 1999, 87, 1368-1372.	2.5	14
82	Extreme variation in testes size in an insect is linked to recent mating activity. Journal of Evolutionary Biology, 2020, 33, 142-150.	1.7	11
83	Variation in muscle and neuromuscular junction morphology between atrophy-resistant and atrophy-prone muscles supports failed re-innervation in aging muscle atrophy. Experimental Gerontology, 2021, 156, 111613.	2.8	11
84	Mitochondrial Permeability Transition Causes Mitochondrial Reactive Oxygen Species- and Caspase 3-Dependent Atrophy of Single Adult Mouse Skeletal Muscle Fibers. Cells, 2021, 10, 2586.	4.1	9
85	Oxygen uptake kinetics during exercise in chronic heart failure: influence of peripheral vascular reserve. Clinical Science, 1999, 97, 569.	4.3	8
86	Nitric oxide synthase inhibition reduces O2cost of force development and spares high-energy phosphates following contractions in pump-perfused rat hindlimb muscles. Experimental Physiology, 2006, 91, 581-589.	2.0	8
87	Mitochondrial Content, but Not Function, Is Altered With a Multimodal Resistance Training Protocol and Adequate Protein Intake in Leucine-Supplemented Pre/Frail Women. Frontiers in Nutrition, 2020, 7, 619216.	3.7	8
88	Dividing to Keep Muscle Together: The Role of Satellite Cells in Aging Skeletal Muscle. Science of Aging Knowledge Environment: SAGE KE, 2006, 2006, pe3-pe3.	0.8	8
89	Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians. ELife, 2022, 11, .	6.0	7
90	Nitric oxide synthase inhibition reduces the O2cost of force development in rat hindlimb muscles pump perfused at matched convective O2delivery. Experimental Physiology, 2005, 90, 889-900.	2.0	6

#	Article	IF	Citations
91	No effect of trans sodium crocetinate on maximal O2 conductance or in moderate hypoxia. Respiratory Physiology and Neurobiology, 2003, 134, 239-246.	1.6	5
92	The Versatility of the Pump-Perfused Rat Hindlimb Preparation: Examples Relating to Skeletal Muscle Function and Energy Metabolism. Applied Physiology, Nutrition, and Metabolism, 2005, 30, 576-590.	1.7	3
93	Last Word on Viewpoint: Muscle atrophy is not always sarcopenia. Journal of Applied Physiology, 2012, 113, 685-685.	2.5	3
94	Mitochondrial protein import in aging muscle: can Tom still do it? Focus on "Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity― American Journal of Physiology - Cell Physiology, 2010, 298, C1298-C1300.	4.6	2
95	Alterations in Mitochondria and Their Impact in Aging Skeletal Muscle. , 2011, , 135-158.		2
96	Integrating Mechanisms of Exacerbated Atrophy and Other Adverse Skeletal Muscle Impact in COPD. Frontiers in Physiology, 2022, 13, .	2.8	2
97	mtDNA Mutation Accumulation in Muscle Is Not a Major Cause of Fiber Loss. Reply to "Comment on: Mitochondrial Mechanisms of Neuromuscular Junction Degeneration with Aging. Cells 2020, 9, 197― Cells, 2020, 9, 1821.	4.1	1
98	Denervation Contributes To Fiber Atrophy And Myosin Heavy Chain Co-expression In Senescent Skeletal Muscle. Medicine and Science in Sports and Exercise, 2010, 42, 25.	0.4	1
99	Fiber type differences in O ₂ cost of force development during fatigue in isolated single fibers. FASEB Journal, 2006, 20, .	0.5	0
100	Caloric restriction prevents the ageâ€related decline in cardiac complex IV activity with aging in male F344BN rats. FASEB Journal, 2006, 20, A384.	0.5	0
101	Prolonged Exercise Training does not Preserve Mitochondrial Enzyme Activity in Senescent Rats. FASEB Journal, 2008, 22, 1163.8.	0.5	0
102	Long term exercise training exacerbates sarcopenia and only modestly attenuates apopotosis. FASEB Journal, 2008, 22, 1163.13.	0.5	0
103	Caloric restriction attenuates apoptosis in larger type II fibers with aging. FASEB Journal, 2008, 22, 1163.12.	0.5	0
104	Caloric restriction attenuates developmental myosin heavy chain expression and myostatin signaling in aged muscles. FASEB Journal, 2008, 22, 959.20.	0.5	0
105	Targeted protein glycosylation (Oâ€ClcNAc) of mitochondrial proteins in rats selected for low running capacity. FASEB Journal, 2012, 26, 565.11.	0.5	0
106	Mitochondrial Functional Specialization in Glycolytic and Oxidative Muscle Fibers: Tailoring the Organelle for Optimal Function. FASEB Journal, 2012, 26, 887.19.	0.5	0