
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8923405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Research, 2010, 3, 895-901.	5.8	165
2	Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 366, 114-119.	2.6	162
3	The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements. Journal of Physics Condensed Matter, 2004, 16, 5825-5847.	0.7	137
4	Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochimica Acta, 2017, 253, 430-438.	2.6	133
5	Carbon plasma immersion ion implantation of nickel–titanium shape memory alloys. Biomaterials, 2005, 26, 2265-2272.	5.7	125
6	A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals. Nano Letters, 2008, 8, 3803-3808.	4.5	124
7	Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. Journal of Power Sources, 2012, 198, 251-257.	4.0	122
8	Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 382, 181-187.	2.6	109
9	Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials, 2011, 32, 330-338.	5.7	103
10	Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing. Acta Materialia, 2007, 55, 3437-3451.	3.8	86
11	Facile synthesis of spinel CuCo ₂ O ₄ nanocrystals as high-performance cathode catalysts for rechargeable Li–air batteries. Chemical Communications, 2014, 50, 14635-14638.	2.2	84
12	Pulsed Laser Deposition and Electrochemical Characterization of LiFePO ₄ –Ag Composite Thin Films. Advanced Functional Materials, 2007, 17, 3885-3896.	7.8	81
13	Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries. Nanoscale, 2013, 5, 6338.	2.8	77
14	Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. Journal of Power Sources, 2011, 196, 6394-6399.	4.0	75
15	Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 383, 213-218.	2.6	72
16	Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 15060.	5.2	72
17	Improvement of the wear behaviour of Al–Pb alloys by mechanical alloying. Wear, 2000, 242, 47-53.	1.5	71
18	Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation. Acta Biomaterialia, 2007, 3, 795-806.	4.1	71

#	Article	IF	CITATIONS
19	Citric Acid- and Ammonium-Mediated Morphological Transformations of Olivine LiFePO ₄ Particles. Chemistry of Materials, 2011, 23, 2848-2859.	3.2	71
20	Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5â ^{~'} x(CoAlMn)x. Journal of Alloys and Compounds, 2002, 330-332, 708-713.	2.8	67
21	Pulse Laser Deposition and Electrochemical Characterization of LiFePO ₄ â^'C Composite Thin Films. Journal of Physical Chemistry C, 2008, 112, 7069-7078.	1.5	65
22	Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology, 2013, 233, 13-26.	2.2	65
23	Solvothermal Synthesis of Monodisperse LiFePO ₄ Micro Hollow Spheres as High Performance Cathode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8961-8967.	4.0	62
24	Surface oxidation of NiTi shape memory alloy in a boiling aqueous solution containing hydrogen peroxide. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 417, 104-109.	2.6	61
25	Phase transformation behavior of porous NiTi alloys fabricated by capsule-free hot isostatic pressing. Journal of Alloys and Compounds, 2008, 449, 139-143.	2.8	57
26	Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys. Journal of Biomedical Materials Research - Part A, 2005, 75A, 256-267.	2.1	56
27	Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel–titanium alloys: A comparative study with commonly used medical grade materials. Journal of Biomedical Materials Research - Part A, 2007, 82A, 403-414.	2.1	56
28	Surface XPS characterization of NiTi shape memory alloy after advanced oxidation processes in UV/H2O2 photocatalytic system. Applied Surface Science, 2007, 253, 8507-8512.	3.1	56
29	Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique. Transactions of Nonferrous Metals Society of China, 2006, 16, 49-53.	1.7	52
30	Preparation and electrochemical properties of Li4Ti5O12 thin film electrodes by pulsed laser deposition. Journal of Power Sources, 2009, 193, 816-821.	4.0	52
31	Preparation of CuAlNi-based shape memory alloys by mechanical alloying and powder metallurgy method. Journal of Materials Processing Technology, 1997, 63, 307-312.	3.1	51
32	Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: reaction mechanism and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 25402.	6.7	51
33	Formation of titanium nitride barrier layer in nickel–titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance. Thin Solid Films, 2005, 488, 20-25.	0.8	50
34	Fabrication of LiF/Fe/Graphene Nanocomposites As Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 892-897.	4.0	50
35	A comparative study of the porous TiNi shape-memory alloys fabricated by three different processes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 755-761.	1.1	49
36	Cobalt-copper layered double hydroxide nanosheets as high performance bifunctional catalysts for rechargeable lithium-air batteries. Journal of Alloys and Compounds, 2016, 688, 380-387.	2.8	48

#	Article	IF	CITATIONS
37	Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 390, 444-451.	2.6	47
38	High porosity and large pore size shape memory alloys fabricated by using pore-forming agent (NH4HCO3) and capsule-free hot isostatic pressing. Journal of Materials Processing Technology, 2007, 192-193, 439-442.	3.1	47
39	Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation. Nuclear Instruments & Methods in Physics Research B, 2005, 237, 411-416.	0.6	46
40	Effects of coating process on the characteristics of Ag–SnO2 contact materials. Materials Chemistry and Physics, 2006, 98, 477-480.	2.0	46
41	Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. Journal of Solid State Chemistry, 2012, 190, 104-110.	1.4	46
42	Surface structure and biomedical properties of chemically polished and electropolished NiTi shape memory alloys. Materials Science and Engineering C, 2008, 28, 1430-1434.	3.8	45
43	Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications. Journal of Materials Processing Technology, 2005, 169, 103-107.	3.1	44
44	Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis. Materials Letters, 2004, 58, 1683-1686.	1.3	41
45	Investigation of nickel suppression and cytocompatibility of surface-treated nickel-titanium shape memory alloys by using plasma immersion ion implantation. Journal of Biomedical Materials Research - Part A, 2005, 72A, 238-245.	2.1	41
46	Nickel release behavior, cytocompatibility, and superelasticity of oxidized porous single-phase NiTi. Journal of Biomedical Materials Research - Part A, 2007, 81A, 948-955.	2.1	41
47	High-porosity NiTi superelastic alloys fabricated by low-pressure sintering using titanium hydride as pore-forming agent. Journal of Materials Science, 2009, 44, 875-881.	1.7	41
48	Hierarchical assembly of Ti(iv)/Sn(ii) co-doped SnO2 nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties. Nanoscale, 2013, 5, 9101.	2.8	41
49	Effect of f.c.c. antiferromagnetism on martensitic transformation in Fe–Mn–Si based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 264, 262-268.	2.6	40
50	The effect of porosity on phase transformation behavior of porous Ti–50.8at.% Ni shape memory alloys prepared by capsule-free hot isostatic pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 585-588.	2.6	39
51	Thermomechanical training behavior and its dynamic mechanical analysis in an Fe-Mn-Si shape memory alloy. Materials Characterization, 1996, 37, 227-236.	1.9	38
52	Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma-implanted porous nickel titanium shape memory alloy. Journal of Biomedical Materials Research - Part A, 2006, 79A, 139-146.	2.1	38
53	Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Materials Chemistry and Physics, 2014, 144, 25-30.	2.0	38
54	Conformal Coating of Heterogeneous CoO/Co Nanocomposites on Carbon Nanotubes as Efficient Bifunctional Electrocatalyst for Li-Air Batteries. Electrochimica Acta, 2016, 219, 560-567.	2.6	38

#	Article	IF	CITATIONS
55	In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation. Surface and Coatings Technology, 2007, 202, 1247-1251.	2.2	37
56	Fabrication and characteristics of bioactive sodium titanate/titania graded film on NiTi shape memory alloy. Journal of Biomedical Materials Research - Part A, 2005, 75A, 595-602.	2.1	34
57	Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. Journal of Biomedical Materials Research - Part A, 2007, 82A, 469-478.	2.1	34
58	Single-crystalline Li4Ti5O12 nanorods and their application in high rate capability Li4Ti5O12/LiMn2O4 full cells. Journal of Power Sources, 2013, 242, 222-229.	4.0	34
59	Analysis of the infrared spectrum and microstructure of hardened cement paste. Cement and Concrete Research, 1999, 29, 805-812.	4.6	33
60	Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys. Journal of Materials Engineering and Performance, 2011, 20, 762-766.	1.2	32
61	Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	32
62	MgNi/Pd multilayer hydrogen storage thin films prepared by dc magnetron sputtering. Journal of Alloys and Compounds, 2006, 422, 58-61.	2.8	31
63	Hydrogen release from titanium hydride in foaming of orthopedic NiTi scaffolds. Acta Biomaterialia, 2011, 7, 1387-1397.	4.1	31
64	Interfacial redox reaction-directed synthesis of silver@cerium oxide core–shell nanocomposites as catalysts for rechargeable lithium–air batteries. Journal of Power Sources, 2015, 286, 136-144.	4.0	31
65	Rugated porous Fe3O4 thin films as stable binder-free anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 22692.	6.7	30
66	Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film electrodes prepared by pulsed laser deposition. Journal of Power Sources, 2012, 217, 491-497.	4.0	30
67	Graded surface structure in chemically polished NiTi shape memory alloy after NaOH treatment. Scripta Materialia, 2005, 52, 1117-1121.	2.6	29
68	Control of porosity and superelasticity of porous NiTi shape memory alloys prepared by hot isostatic pressing. Smart Materials and Structures, 2005, 14, S201-S206.	1.8	28
69	Reverse transformations in CuAlNiMnTi alloy at elevated temperatures. Acta Materialia, 1996, 44, 1189-1199.	3.8	27
70	Nitrogen plasma-implanted nickel titanium alloys for orthopedic use. Surface and Coatings Technology, 2007, 201, 5607-5612.	2.2	27
71	DSC study of the effect of aging temperature on the reverse martensitic transformation in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. Materials Letters, 2005, 59, 404-407.	1.3	25
72	MmM5/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering. Journal of Alloys and Compounds, 2004, 370, L4-L6.	2.8	24

#	Article	IF	CITATIONS
73	Superelastic properties of porous TiNi shape memory alloys prepared by hot isostatic pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 657-660.	2.6	24
74	XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy. Journal of Materials Science: Materials in Medicine, 2009, 20, 223-228.	1.7	24
75	Electrochemical performance and kinetic behavior of lithium ion in Li 4 Ti 5 O 12 thin film electrodes. Applied Surface Science, 2014, 314, 936-941.	3.1	24
76	Effect of Sn addition on the corrosion behavior of Tiâ€Ta alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 259-263.	0.8	23
77	Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids. Applied Surface Science, 2007, 253, 3154-3159.	3.1	22
78	Passivation and oxygen ion implantation double surface treatment on porous NiTi shape memory alloys and its Ni suppression performance. Surface and Coatings Technology, 2009, 204, 58-63.	2.2	22
79	Effect of carbon nanotubes and their dispersion on thermal curing of polyimide precursors. Polymer Degradation and Stability, 2010, 95, 1672-1678.	2.7	22
80	Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing. Journal of Materials Engineering and Performance, 2011, 20, 783-786.	1.2	22
81	Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2586-2601.	2.1	22
82	Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 192-197.	2.6	21
83	Effect of thermo-mechanical treatment on superelastic behavior of Ti–19Nb–14Zr (at.%) shape memory alloy. Intermetallics, 2013, 32, 44-50.	1.8	21
84	Effect of heat treatment time on microstructure and mechanical properties of Ti–19Nb–9Zr (at%) shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 427-433.	2.6	21
85	Effect of mechanical alloying on the solid state reaction processing of Ni-36.5 at.% Al alloy. Intermetallics, 2002, 10, 865-871.	1.8	20
86	Electrochemical characterization of diamond like carbon thin films. Diamond and Related Materials, 2008, 17, 1871-1876.	1.8	20
87	Facile synthesis of porous Li-rich layered Li[Li _{0.2} Mn _{0.534} Ni _{0.133} Co _{0.133}]O ₂ as high-performance cathode materials for Li-ion batteries. RSC Advances, 2015, 5, 30507-30513.	1.7	20
88	Pulsed laser deposition of NiTi shape memory alloy thin films with optimum parameters. Thin Solid Films, 1998, 330, 196-201.	0.8	19
89	Growth of TiNiHf shape memory alloy thin films by laser ablation of composite targets. Applied Surface Science, 1998, 127-129, 579-583.	3.1	19
90	Cu-based shape memory alloys with enhanced thermal stability and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 622-624.	2.6	19

#	Article	IF	CITATIONS
91	Microstructure and hydrogen absorption properties of nano-phase composite prepared by mechanical alloying of MmNi5â°'x(CoAlMn)x and Mg. Journal of Alloys and Compounds, 1999, 293-295, 531-535.	2.8	19
92	Phase transitions in reactive formation of Ti5Si3/TiAl in situ composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 763-771.	1.1	19
93	Microstructure of MmM5/Mg multi-layer hydrogen storage films prepared by magnetron sputtering. Microscopy Research and Technique, 2004, 64, 323-329.	1.2	19
94	Microstructure of MmM5/Mg multi-layer films prepared by magnetron sputtering. Journal of Alloys and Compounds, 2005, 404-406, 485-489.	2.8	19
95	Oxygen plasma treatment to restrain nickel out-diffusion from porous nickel titanium orthopedic materials. Surface and Coatings Technology, 2007, 201, 4893-4896.	2.2	19
96	Four-electrode symmetric setup for electrochemical impedance spectroscopy study of Lithium–Sulfur batteries. Journal of Power Sources, 2019, 441, 227202.	4.0	19
97	Effect of parent phase ageing on CuZnAl shape memory alloys with Mn and Zr addition. Materials Letters, 1998, 33, 291-296.	1.3	18
98	Effect of rare earth element Nd on the ductility and fracture behavior of a Ni-rich NiAl alloy. Scripta Materialia, 1997, 37, 99-102.	2.6	17
99	Phase transformation behaviors in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 392, 106-111.	2.6	17
100	In vitro biocompatibility of titanium-nickel alloy with titanium oxide film by H2O2 oxidation. Transactions of Nonferrous Metals Society of China, 2007, 17, 553-557.	1.7	17
101	Effect of graphite addition on martensitic transformation and damping behavior of NiTi shape memory alloy. Materials Letters, 2011, 65, 1073-1075.	1.3	17
102	Facile synthesis and electrochemical characterization of Sn4Ni3/C nanocomposites as anode materials for lithium ion batteries. Journal of Solid State Chemistry, 2012, 196, 536-542.	1.4	17
103	Layered Li2MnO3·3LiNi0.5â^'xMn0.5â^'xCo2xO2 microspheres with Mn-rich cores as high performance cathode materials for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 16579.	1.3	17
104	Effects of anodic oxidation in H2SO4 electrolyte on the biocompatibility of NiTi shape memory alloy. Materials Letters, 2008, 62, 3512-3514.	1.3	16
105	Remarkable biocompatibility enhancement of porous NiTi alloys by a new surface modification approach: <i>lnâ€situ</i> nitriding and <i>in vitro</i> and <i>in vivo</i> evaluation. Journal of Biomedical Materials Research - Part A, 2011, 99A, 544-553.	2.1	16
106	Large-scale fabrication of hierarchical α-Fe2O3 assemblies as high performance anode materials for lithium-ion batteries. CrystEngComm, 2012, 14, 7882.	1.3	16
107	Formation of MgCNi3 and Mg–Ni amorphous mixture by mechanical alloying of Mg–Ni–C system. Materials Letters, 2004, 58, 2203-2206.	1.3	15
108	In vitro corrosion behavior of TiN layer produced on orthopedic nickel–titanium shape memory alloy by nitrogen plasma immersion ion implantation using different frequencies. Surface and Coatings Technology, 2008, 202, 2463-2466.	2.2	15

#	Article	IF	CITATIONS
109	Nano-Scale Surface Morphology, Wettability and Osteoblast Adhesion on Nitrogen Plasma-Implanted NiTi Shape Memory Alloy. Journal of Nanoscience and Nanotechnology, 2009, 9, 3449-3454.	0.9	15
110	Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy. Journal of Alloys and Compounds, 2009, 482, 298-301.	2.8	15
111	Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 525-530.	0.9	14
112	Nickel release behavior and surface characteristics of porous NiTi shape memory alloy modified by different chemical processes. Journal of Biomedical Materials Research - Part A, 2009, 89A, 483-489.	2.1	14
113	Thin films of ferromagnetic shape memory alloys processed by laser beam ablation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 443-447.	2.6	13
114	Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 270-274.	0.6	13
115	New plasma surface-treated memory alloys: Towards a new generation of "smart―orthopaedic materials. Materials Science and Engineering C, 2008, 28, 454-459.	3.8	13
116	Capacity fading of pulsed-laser deposited HT-LiCoO2 films cycled in LiClO4/PC. Materials Chemistry and Physics, 2008, 107, 254-260.	2.0	13
117	NiTi shape memory alloy thin film sensor micro-array for detection of infrared radiation. Journal of Alloys and Compounds, 2008, 449, 148-151.	2.8	13
118	In situ synthesis of nanostructured titania film on NiTi shape memory alloy by Fenton's oxidation method. Transactions of Nonferrous Metals Society of China, 2007, 17, 902-906.	1.7	12
119	In vitro bioactivity and osteoblast response on chemically modified biomedical porous NiTi synthesized by capsule-free hot isostatic pressing. Surface and Coatings Technology, 2008, 202, 2458-2462.	2.2	12
120	Electrochemical Stability of Orthopedic Porous NiTi Shape Memory Alloys Treated by Different Surface Modification Techniques. Journal of the Electrochemical Society, 2009, 156, C187.	1.3	12
121	Triethylene Glycol Assisted Synthesis of Pure Tavorite LiFeSO ₄ F Cathode Material for Li-Ion Battery. Journal of the Electrochemical Society, 2013, 160, A3072-A3076.	1.3	12
122	Improvement of the shape memory characteristics of a Cu-Zn-Al alloy with manganese and zirconium addition. Scripta Materialia, 1997, 36, 955-960.	2.6	11
123	Room-temperature growth of high-purity titanium nitride by laser ablation of titanium in a nitrogen atmosphere. Surface and Coatings Technology, 1998, 110, 153-157.	2.2	11
124	Microstructure of Mg–Ni thin film prepared by direct current magnetron sputtering and its properties as a negative electrode. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1905-1908.	0.9	11
125	Sputtered Al-doped lithium manganese oxide films for the cathode of lithium ion battery: The post-deposition annealing temperature effect. Journal of Alloys and Compounds, 2009, 480, 981-986.	2.8	11
126	Hydrothermal Growth Mechanism of Controllable Hydrophilic Titanate Nanostructures on Medical NiTi Shape Memory Alloy. Journal of Materials Engineering and Performance, 2012, 21, 2600-2606.	1.2	11

#	Article	IF	CITATIONS
127	Effects of pulsing frequency on shape recovery and investigation of nickel out-diffusion after mechanical bending of nitrogen plasma implanted NiTi shape memory alloys. Surface and Coatings Technology, 2007, 201, 8286-8290.	2.2	10
128	Wear Properties of Porous NiTi Orthopedic Shape Memory Alloy. Journal of Materials Engineering and Performance, 2012, 21, 2622-2627.	1.2	10
129	Two-way shape memory effect of TiNiSn alloys developed by martensitic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 434-437.	2.6	10
130	Martensitic Transformation in Ti _{36.5} Ni _{48.5} Hf ₁₅ High Temperature Shape Memory Alloy. Materials Transactions, JIM, 1997, 38, 842-851.	0.9	9
131	Preparation of metastable precursors with different compositions of Ti–Al–Si by mechanical alloying. Journal of Materials Processing Technology, 2003, 139, 434-439.	3.1	9
132	Characterization of transformation behavior in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. Journal of Materials Science, 2005, 40, 773-776.	1.7	9
133	Poly(ethylene terephthalate)/polypropylene microfibrillar composites. III. Structural development of poly(ethylene terephthalate) microfibers. Journal of Applied Polymer Science, 2007, 104, 137-146.	1.3	9
134	Growth of HT-LiCoO2 thin films on Pt-metalized silicon substrates. Rare Metals, 2008, 27, 266-272.	3.6	9
135	Forming and control of pores by capsule-free hot isostatic pressing in NiTi shape memory alloys. Smart Materials and Structures, 2008, 17, 025013.	1.8	9
136	Thermal cycling effects in Cu-Zn-Al shape memory alloy by positron lifetime measurementS. Scripta Metallurgica Et Materialia, 1995, 32, 1865-1869.	1.0	8
137	Novel method of ultrafine titania particle sol preparation. Journal of Materials Science Letters, 1997, 16, 1284-1285.	0.5	8
138	ln situ composite formation in Tiî—,Alî—,Si ternary system. Journal of Materials Processing Technology, 1999, 89-90, 361-366.	3.1	8
139	Influences of solution treatment on compressive properties of porous NiTi shape memory alloy with the porosity of 53.4 vol% fabricated by combustion synthesis. Journal of Materials Science, 2004, 39, 4949-4951.	1.7	8
140	Biomimetic deposition process of an apatite coating on NiTi shape memory alloy. Materials Letters, 2006, 60, 3002-3006.	1.3	8
141	Kinetics of Li ⁺ transport and capacity retention capability of HT- LiCoO ₂ films. Physica Scripta, 2007, T129, 38-42.	1.2	8
142	Effect of aging on martensitic transformation behavior of Ti48.8Ni50.8V0.4 alloy. Journal of Materials Science, 2011, 46, 6432-6436.	1.7	8
143	NiTi shape memory alloy thin film micro-cantilevers array. Thin Solid Films, 2011, 519, 5307-5309.	0.8	8
144	Superelastic Porous NiTi with Adjustable Porosities Synthesized by Powder Metallurgical Method. Journal of Materials Engineering and Performance, 2012, 21, 2553-2558.	1.2	8

#	Article	IF	CITATIONS
145	Title is missing!. Journal of Materials Science, 2003, 38, 2499-2504.	1.7	7
146	Removal of martensite stabilisation in CANTiM shape memory alloy by post-quench ageing. Journal of Materials Processing Technology, 1997, 63, 600-603.	3.1	6
147	Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 1865-1871.	1.1	6
148	Growth of high-temperature NiTi1â^'xHfx shape memory alloy thin films by laser ablation of composite targets. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3420-3422.	0.9	6
149	Nanophase decomposition in eutectoid Zn–Al based alloy films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 145-152.	2.6	6
150	On nanophase stability in eutectoid Zn–Al based alloy films. Applied Surface Science, 2004, 236, 106-113.	3.1	6
151	Improvement of electrochemical performance of Si thin film anode by rare-earth La PIII technique. Surface and Coatings Technology, 2007, 201, 6785-6788.	2.2	6
152	The effect of pore characteristics on Ni suppression of porous NiTi shape memory alloys modified by surface treatment. Thin Solid Films, 2011, 519, 5297-5301.	0.8	6
153	In vitro and in vivo evaluation of porous NiTi alloy modified by sputtering a surface TiO2 film. Science China Technological Sciences, 2012, 55, 437-444.	2.0	6
154	Bioactive NiTi shape memory alloy fabricated by oxidizing in H2O2 solution and subsequent NaOH treatment. Journal of Materials Science, 2006, 41, 1671-1674.	1.7	5
155	Superelastic behavior and microstructure of Ti19Nb9Zr1Mo (at%) alloy. Materials Letters, 2013, 109, 172-174.	1.3	5
156	Reduction and removal of martensite stabilization in Cu-Zn-Al-Mn-Zr shape memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2765-2767.	1.1	4
157	Effect of manganese on antiferromagnetic transition in Mn-Fe-(Cu) alloys. Scripta Materialia, 2001, 44, 87-90.	2.6	4
158	BIOMIMETIC DEPOSITION OF APATITE ON SURFACE CHEMICALLY MODIFIED POROUS NITI SHAPEMEMORY ALLOY. Surface Review and Letters, 2008, 15, 97-104.	0.5	4
159	Evaluation of Pulsed Laser Deposited Li ₄ Ti ₅ O _{12 } Thin Film Anodes by CV and EIS. Materials Science Forum, 0, 743-744, 13-19.	0.3	4
160	Structure and electrochemical performance of nanosized Li1.1(Ni0.35Co0.35Mn0.30)O2 powders for lithium-ion battery. Functional Materials Letters, 2014, 07, 1450061.	0.7	4
161	Mechanical characteristics of hipped SiC particulate-reinforced aluminum alloy metal matrix composites. , 1999, , .		3
162	Effects of H2O2 pretreatment on surface characteristics and bioactivity of NaOH-treated NiTi shape memory alloy. Transactions of Nonferrous Metals Society of China, 2006, 16, 1295-1300.	1.7	3

#	Article	IF	CITATIONS
163	Differential Scanning Calorimetric (DSC) Analysis of Rotary Nickel-Titanium (NiTi) Endodontic File (RNEF). Journal of Materials Engineering and Performance, 2012, 21, 2515-2518.	1.2	3
164	Ionic Liquid Mediated Synthesis of Lath Shaped <scp>CuO</scp> Microâ€Assembles as Extremely Stable Anode Material for Lithiumâ€lon Batteries. Chinese Journal of Chemistry, 2017, 35, 1299-1304.	2.6	3
165	Evolutionary variable step-size algorithm for adaptive filtering. , 0, , .		2
166	Study of anisothermal ageing of CANTiM shape memory alloys by positron annihilation. Metals and Materials International, 1996, 2, 75-80.	0.2	2
167	Fast implementation of evolutionary variable step size algorithm. , O, , .		2
168	Incommensurate modulated structure study of a Cu–Zn–Al–Zr phase. Acta Materialia, 1998, 46, 5541-5555.	3.8	2
169	Pulsed-laser deposition of high-purity TiN thin films. , 1998, 3550, 177.		2
170	Slow positron annihilation studies of vacancy-type defects in the near-surface region of Cu and Nb before and after wear. Applied Physics A: Materials Science and Processing, 1999, 68, 325-327.	1.1	2
171	Effects of aging temperature on the martensitic transformation in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. Journal of Materials Science, 2005, 40, 4959-4961.	1.7	2
172	Study of Thermal Scanning Rates on Transformations of Ti-19Nb-9Zr (at.%) by Means of Differential Scanning Calorimetry Analysis. Journal of Materials Engineering and Performance, 2012, 21, 2675-2679.	1.2	2
173	Effect of Cube Nucleus Distribution on Cube Texture. Materials Science Forum, 1994, 157-162, 1765-1770.	0.3	1
174	<title>Characterization study of modified Cu-Zn-Al shape memory alloy with the addition of Mn and Zr</title> . , 1997, 3040, 31.		1
175	Application of shape memory alloy as detector material for far-infrared imaging transducers. , 0, , .		1
176	Effects of Electro-Fenton Process on Blood Compatibility and Nickel Suppression of NiTi Shape Memory Alloy. Advanced Materials Research, 0, 47-50, 314-317.	0.3	1
177	Microstructural characteristics and biocompatibility of a Type-B carbonated hydroxyapatite coating deposited on NiTi shape memory alloy. Bio-Medical Materials and Engineering, 2009, 19, 401-408.	0.4	1
178	TiNi thin film shape memory alloys for optical sensing applications. , 0, , 437-456.		1
179	Transformation Stability of Thermo-Elastic Martensite in CANTiM SMA During Thermo-Mechanical Cycling. European Physical Journal Special Topics, 1995, 05, C8-931-C8-935.	0.2	0

A variable step size algorithm with generate-and-evaluate function. , 0, , .

#	Article	IF	CITATIONS
181	Water Treatment Using Inorganic Membrane. Environmental Technology (United Kingdom), 1997, 18, 1151-1156.	1.2	Ο
182	Shape Memory Effect of a Nd-doped Polycrystalline NiAl Alloy. Scripta Materialia, 1998, 38, 969-974.	2.6	0
183	Thermal stability of TiY membrane. Journal of Materials Science, 1999, 34, 2789-2792.	1.7	Ο
184	Novel far infrared imaging sensor based on the use of titanium-nickel shape memory alloys. , 2002, 4935, 69.		0
185	NiAl shape memory alloy prepared by hot isostatic pressing. European Physical Journal Special Topics, 2003, 112, 1059-1062.	0.2	0
186	Improved corrosion resistance of plasma carbon coated NiTi orthopedic materials. , 0, , .		0
187	Suppression of Nickel Out-Diffusion from Porous Nickel-Titanium Shape Memory Alloy by Plasma Immersion Ion Implantation. IEEE International Conference on Plasma Science, 2005, , .	0.0	Ο
188	Suppression of nickel release in nickeltitanium alloys by plasma immersion ion implantation surface treatment: towards a new generation of "smart" orthopaedic implants. , 2006, , .		0
189	Bioactivity and Corrosion Resistance of NiTi After Calcium Plasma Immersion Ion Implantation. , 2007, , .		Ο
190	Calcium filling of TiO <inf>2</inf> nanotubes on the surface of NiTi shape memory alloys by plasma immersion ion implantation. , 2008, , .		0
191	Formation of CaPO <inf>4</inf> and suppression of Ni leaching in nitinol using oxygen and sodium plasma immersion ion implantation. , 2008, , .		Ο
192	Fabrication of Titania Film on NiTi Alloy by a Deposition-Assisted Advanced Oxidation Method. Advanced Materials Research, 2008, 47-50, 310-313.	0.3	0
193	Nickel ion level in scoliotic patients implanted with nitrogen plasma surface modified nickel-titanium superelastic spinal implant. , 2010, , .		Ο
194	Preparation of solid electrolyte PVDF on MOS <inf>2</inf> in Silicon MCP for three-dimensional Li ion microbatteries. , 2010, , .		0
195	Scanning Electron Microscopic Study of Rotary Nickel-Titanium Endodontic File (RNEF). Advanced Materials Research, 2013, 749, 262-269.	0.3	О