William David Cabos Narvaez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922960/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Med-CORDEX Initiative for Mediterranean Climate Studies. Bulletin of the American Meteorological Society, 2016, 97, 1187-1208.	1.7	231
2	Future evolution of Marine Heatwaves in the Mediterranean Sea. Climate Dynamics, 2019, 53, 1371-1392.	1.7	162
3	Regionally coupled atmosphereâ€oceanâ€sea iceâ€marine biogeochemistry model ROM: 1. Description and validation. Journal of Advances in Modeling Earth Systems, 2015, 7, 268-304.	1.3	114
4	Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble. Climate Dynamics, 2020, 54, 2135-2165.	1.7	78
5	The Relative Influence of Atmospheric and Oceanic Model Resolution on the Circulation of the North Atlantic Ocean in a Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2026-2041.	1.3	50
6	Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius. Journal of Advances in Modeling Earth Systems, 2017, 9, 2601-2614.	1.3	48
7	Present-climate precipitation and temperature extremes over Spain from a set of high resolution RCMs. Climate Research, 2013, 58, 149-164.	0.4	45
8	The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Climate Dynamics, 2017, 48, 4051-4069.	1.7	42
9	Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 66, 23966.	0.8	42
10	Consistency of climate change projections from multiple global and regional model intercomparison projects. Climate Dynamics, 2019, 52, 1139-1156.	1.7	39
11	Evaluation of FESOM2.0 Coupled to ECHAM6.3: Preindustrial and HighResMIP Simulations. Journal of Advances in Modeling Earth Systems, 2019, 11, 3794-3815.	1.3	38
12	Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Climate Dynamics, 2019, 52, 4305-4328.	1.7	31
13	Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1715-1735.	1.2	29
14	Regionally Coupled Atmosphereâ€Oceanâ€Marine Biogeochemistry Model ROM: 2. Studying the Climate Change Signal in the North Atlantic and Europe. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001646.	1.3	25
15	Mean fields and interannual variability in RCM simulations over Spain: the ESCENA project. Climate Research, 2013, 57, 201-220.	0.4	25
16	The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model. Ocean Science, 2020, 16, 743-765.	1.3	25
17	Climate change impact on Northwestern African offshore wind energy resources. Environmental Research Letters, 2019, 14, 124065.	2.2	23
18	Tropical Atlantic Variability: Observations and Modeling. Atmosphere, 2019, 10, 502.	1.0	22

#	Article	IF	CITATIONS
19	Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Climate Dynamics, 2022, 58, 2501-2524.	1.7	22
20	Impact of ocean-atmosphere coupling on regional climate: the Iberian Peninsula case. Climate Dynamics, 2020, 54, 4441-4467.	1.7	20
21	Characterization of the wind speed variability and future change in the Iberian Peninsula and the Balearic Islands. Wind Energy, 2016, 19, 1223-1237.	1.9	19
22	Regional earth system modelling framework for CORDEX-SA: an integrated model assessment for Indian summer monsoon rainfall. Climate Dynamics, 2022, 59, 2409-2428.	1.7	16
23	Assessing the climate change impact on the North African offshore surface wind and coastal low-level jet using coupled and uncoupled regional climate simulations. Climate Dynamics, 2019, 52, 7111-7132.	1.7	14
24	A Climatological Analysis of the Benguela Coastal Low‣evel Jet. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3960-3978.	1.2	14
25	On the Structure and Teleconnections of North Atlantic Decadal Variability. Journal of Climate, 2011, 24, 2209-2223.	1.2	13
26	Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate. Natural Hazards and Earth System Sciences, 2021, 21, 53-71.	1.5	13
27	On the uncertainty of future projections of Marine Heatwave events in the North Atlantic Ocean. Climate Dynamics, 2021, 56, 2027-2056.	1.7	13
28	The present and future offshore wind resource in the Southwestern African region. Climate Dynamics, 2021, 56, 1371-1388.	1.7	13
29	The Dirac equation in external fields: Variable separation in Cartesian coordinates. Journal of Mathematical Physics, 1991, 32, 3184-3188.	0.5	11
30	El impacto de la producción cientÃfica de la Universidad de Alcalá de Henares. Revista Espanola De Documentacion Cientifica, 1998, 21, 402-415.	0.1	11
31	On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic. Climate Dynamics, 2020, 54, 4733-4757.	1.7	10
32	AMOC, Water Mass Transformations, and Their Responses to Changing Resolution in the Finiteâ€VolumE Sea Iceâ€Ocean Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002317.	1.3	10
33	How Will a Warming Climate Affect the Benguela Coastal Low‣evel Wind Jet?. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5010-5028.	1.2	9
34	The North African coastal low level wind jet: a high resolution view. Climate Dynamics, 2019, 53, 1211-1230.	1.7	9
35	Dirac equation in external fields: Separation of variables in curvilinear coordinates. Journal of Mathematical Physics, 1992, 33, 914-925.	0.5	8
36	The variability of the tropical Atlantic. Journal of Geophysical Research, 1998, 103, 7475-7489.	3.3	8

#	Article	IF	CITATIONS
37	An Assessment of Differences in ENSO Mechanisms in a Coupled GCM Simulation. Journal of Climate, 2006, 19, 69-87.	1.2	7
38	The effect of additional citations in the stability of Journal Citation Report categories. Scientometrics, 2014, 98, 1113-1130.	1.6	7
39	Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. International Journal of Biometeorology, 2018, 62, 1721-1732.	1.3	7
40	Nonlinear Trends and Nonstationary Oscillations as Extracted From Annual Accumulated Precipitation at Mexico City. Earth and Space Science, 2018, 5, 473-485.	1.1	7
41	Assessment of the Canary current upwelling system in a regionally coupled climate model. Climate Dynamics, 2022, 58, 69-85.	1.7	7
42	Surface and Intermediate Water Changes Triggering the Future Collapse of Deep Water Formation in the North Western Mediterranean. Geophysical Research Letters, 2022, 49, .	1.5	7
43	Indian Ocean marine biogeochemical variability and its feedback on simulated South Asia climate. Earth System Dynamics, 2022, 13, 809-831.	2.7	7
44	Benefits of simulating precipitation characteristics over Africa with a regionally-coupled atmosphere–ocean model. Climate Dynamics, 2023, 60, 1079-1102.	1.7	7
45	Linear and nonlinear links of winter European precipitation to Northern Hemisphere circulation patterns. Climate Dynamics, 2019, 52, 6533-6555.	1.7	6
46	AMOC Variability and Watermass Transformations in the AWI Climate Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002582.	1.3	6
47	Impact of air–sea coupling on the climate change signal over the Iberian Peninsula. Climate Dynamics, 2021, 57, 2325-2349.	1.7	5
48	Demonstrating the asymmetry of the Indian Ocean Dipole response in regional earth system model of CORDEX-SA. Atmospheric Research, 2022, 273, 106182.	1.8	5
49	A multi-model ensemble view of winter heat flux dynamics and the dipole mode in the Mediterranean Sea. Climate Dynamics, 2017, 48, 1089-1108.	1.7	4
50	Impact of ocean–atmosphere coupling on future projection of Medicanes in the Mediterranean sea. International Journal of Climatology, 2021, 41, 2226-2238.	1.5	4
51	Dirac equation in external fields: Separation of variables in nondiagonal metrics. Journal of Mathematical Physics, 1992, 33, 297-303.	0.5	3
52	Sea ice concentration anomalies as long range predictors of anomalous conditions in the North Atlantic basin. Tellus, Series A: Dynamic Meteorology and Oceanography, 2002, 54, 245-259.	0.8	3
53	Generation of equatorial Atlantic warm and cold events in a coupled general circulation model simulation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2002, 54, 426-438.	0.8	3
54	Empirical forecasts of tropical Atlantic sea surface temperature anomalies. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2199-2210.	1.0	3

#	Article	IF	CITATIONS
55	Separation of variables in the Dirac equation for one class of non-diagonal metrics. Classical and Quantum Gravity, 1992, 9, 713-720.	1.5	2
56	Dry season circulationâ€ŧype classification applied to precipitation and temperature in the Peruvian Andes. International Journal of Climatology, 2020, 40, 6473-6491.	1.5	2
57	Impact of ocean-atmosphere coupling on present and future Köppen-Geiger climate classification in Europe. Atmospheric Research, 2022, 275, 106223.	1.8	2
58	Regional earth system model for <scp>CORDEXâ€6outh</scp> Asia: A comparative assessment of <scp>RESM</scp> and <scp>ESM</scp> over the tropical Indian Ocean. International Journal of Climatology, 2022, 42, 9131-9149.	1.5	2
59	Climate Evaluation of a High-Resolution Regional Model over the Canary Current Upwelling System. Lecture Notes in Computer Science, 2019, , 240-252.	1.0	1
60	Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula. Renewable Energy, 2020, 159, 151-161.	4.3	1
61	Impact of global warming on ENSO phase change. Advances in Geosciences, 0, 6, 103-110.	12.0	1
62	Climate change signal in the ocean circulation of the Tyrrhenian Sea. Earth System Dynamics, 2022, 13, 303-319.	2.7	1
63	Exploring the Hjif-Index, an Analogue to the H-Like Index for Journal Impact Factors. Publications, 2018, 6, 14.	1.9	0