
Giuliano Liuzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922935/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Explaining NOMAD D/H Observations by Cloudâ€Induced Fractionation of Water Vapor on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	11
2	Variations in Vertical CO/CO ₂ Profiles in the Martian Mesosphere and Lower Thermosphere Measured by the ExoMars TGO/NOMAD: Implications of Variations in Eddy Diffusion Coefficient. Geophysical Research Letters, 2022, 49, .	1.5	7
3	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	1.5	7
4	The Deuterium Isotopic Ratio of Water Released From the Martian Caps as Measured With TGO/NOMAD. Geophysical Research Letters, 2022, 49, .	1.5	15
5	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	1.1	27
6	Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advances, 2021, 7, .	4.7	31
7	Probing the Atmospheric Cl Isotopic Ratio on Mars: Implications for Planetary Evolution and Atmospheric Chemistry. Geophysical Research Letters, 2021, 48, e2021GL092650.	1.5	7
8	Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD. Geophysical Research Letters, 2021, 48, e2021GL092506.	1.5	15
9	The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations. Icarus, 2021, 362, 114404.	1.1	11
10	No evidence of phosphine in the atmosphere of Venus from independent analyses. Nature Astronomy, 2021, 5, 631-635.	4.2	50
11	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	4.2	40
12	A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	8
13	First Detection and Thermal Characterization of Terminator CO ₂ Ice Clouds With ExoMars/NOMAD. Geophysical Research Letters, 2021, 48, .	1.5	12
14	Explanation for the Increase in Highâ€Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084354.	1.5	62
15	Strong Variability of Martian Water Ice Clouds During Dust Storms Revealed From ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006250.	1.5	39
16	Potential improvements in global carbon flux estimates from a network of laser heterodyne radiometer measurements of column carbon dioxide. Atmospheric Measurement Techniques, 2019, 12, 2579-2594.	1.2	10
17	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	13.7	111
18	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	13.7	107

GIULIANO LIUZZI

#	Article	IF	CITATIONS
19	Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2019, 124, 3482-3497.	1.5	88
20	Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 2019, 321, 671-690.	1.1	32
21	CO2 spectroscopy and forward/inverse radiative transfer modelling in the thermal band using IASI spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 222-223, 65-83.	1.1	17
22	An application to Mediterranean Sea of the SEVIRI level 2 processor for surface parameters. , 2019, , .		0
23	Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa. Atmospheric Chemistry and Physics, 2018, 18, 4377-4401.	1.9	25
24	Evaluation of Radiative Transfer Models With Clouds. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6142-6157.	1.2	28
25	Physical Retrieval of Land Surface Emissivity Spectra from Hyper-Spectral Infrared Observations and Validation with In Situ Measurements. Remote Sensing, 2018, 10, 976.	1.8	29
26	Four years of IASI CO2, CH4, N2O retrievals: validation with in situ observations from the Mauna Loa station. , 2018, , .		2
27	Dimensionality reduction through random projections for application to the retrieval of atmospheric parameters from hyperspectral satellite sensors. , 2018, , .		0
28	Assessment of IASI capability for retrieving carbonyl sulphide (OCS). Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 201, 197-208.	1.1	16
29	Using the full IASI spectrum for the physical retrieval of temperature, H2O, HDO, O3, minor and trace gases. AIP Conference Proceedings, 2017, , .	0.3	1
30	The very first multi-temporal and multi-spectral Level-2 SEVIRI processor for the simultaneous physical retrieval of surface temperature and emissivity. AIP Conference Proceedings, 2017, , .	0.3	2
31	All-sky radiative transfer calculations for IASI and IASI-NG: The σ-IASI-as code. AIP Conference Proceedings, 2017, , .	0.3	1
32	Consistency of dimensional distributions and refractive indices of desert dust measured over Lampedusa with IASI radiances. Atmospheric Measurement Techniques, 2017, 10, 599-615.	1.2	21
33	Demonstration of random projections applied to the retrieval problem of geophysical parameters from hyper-spectral infrared observations. Applied Optics, 2016, 55, 6576.	2.1	17
34	Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 182, 128-157.	1.1	51
35	Hyper fast radiative transfer for the physical retrieval of surface parameters from SEVIRI observations. Journal of Physics: Conference Series, 2015, 633, 012059.	0.3	3
36	SEVIRI Cloud mask by Cumulative Discriminant Analysis. Journal of Physics: Conference Series, 2015, 633, 012056.	0.3	1

GIULIANO LIUZZI

#	Article	IF	CITATIONS
37	Revisiting the identification of methane on Mars using TES data. Astronomy and Astrophysics, 2015, 581, A136.	2.1	10
38	Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals. Applied Optics, 2015, 54, 5924.	2.1	20
39	Simultaneous physical retrieval of Martian geophysical parameters using Thermal Emission Spectrometer spectra: the φ-MARS algorithm. Applied Optics, 2015, 54, 2334.	0.9	3
40	Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and intercomparison study. Atmospheric Measurement Techniques, 2015, 8, 2981-2997.	1.2	47
41	Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation. Atmospheric Measurement Techniques, 2014, 7, 3355-3372.	1.2	33
42	Validation of H_2O continuum absorption models in the wave number range 180–600 cm^â^'1 with atmospheric emitted spectral radiance measured at the Antarctica Dome-C site. Optics Express, 2014, 22, 16784.	1.7	24
43	Polarization in binary microlensing events. Physica Scripta, 2014, 89, 084001.	1.2	8
44	Search for Martian methane with TES data: development of a dedicated radiative transfer code: first results. Proceedings of SPIE, 2013, , .	0.8	2
45	Surface parameters from SEVIRI observations through a Kalman filter approach: application and evaluation of the scheme in Southern Italy. Tethys, 0, , .	0.0	2