
Sergey O Bachurin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer's Activity Profile. Molecules, 2022, 27, 1060.	1.7	10
2	In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Medicinal Research Reviews, 2021, 41, 2804-2822.	5.0	13
3	Mitochondria as a promising target for developing novel agents for treating Alzheimer's disease. Medicinal Research Reviews, 2021, 41, 803-827.	5.0	24
4	A bioisostere of Dimebon/Latrepirdine delays the onset and slows the progression of pathology in FUS transgenic mice. CNS Neuroscience and Therapeutics, 2021, 27, 765-775.	1.9	4
5	Neurodegenerative disorders—Searching for targets and new ways of diseases treatment. Medicinal Research Reviews, 2021, 41, 2603-2605.	5.0	27
6	Conjugation of Aminoadamantane and γ-Carboline Pharmacophores Gives Rise to Unexpected Properties of Multifunctional Ligands. Molecules, 2021, 26, 5527.	1.7	14
7	Novel conjugates of 4-amino-2,3-polymethylenequinolines and vanillin as potential multitarget agents for AD treatment. Mendeleev Communications, 2021, 31, 606-608.	0.6	8
8	Novel Positive Allosteric Modulators of AMPA Receptors Based on 3,7-Diazabicyclo[3.3.1]nonane Scaffold. Molecular Neurobiology, 2020, 57, 191-199.	1.9	17
9	Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer's disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorganic Chemistry, 2020, 94, 103387.	2.0	44
10	New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules, 2020, 25, 3915.	1.7	26
11	Bis-γ-carbolines as new potential multitarget agents for Alzheimer's disease. Pure and Applied Chemistry, 2020, 92, 1057-1080.	0.9	6
12	Pharmacological Sequestration of Mitochondrial Calcium Uptake Protects Neurons Against Glutamate Excitotoxicity. Molecular Neurobiology, 2019, 56, 2244-2255.	1.9	48
13	Overview of novel multifunctional agents based on conjugates of Î ³ -carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer's disease. Chemico-Biological Interactions, 2019, 308, 224-234.	1.7	36
14	Conjugates of methylene blue with γ-carboline derivatives as new multifunctional agents for the treatment of neurodegenerative diseases. Scientific Reports, 2019, 9, 4873.	1.6	25
15	New Therapeutic Property of Dimebon as a Neuroprotective Agent. Current Medicinal Chemistry, 2019, 25, 5315-5326.	1.2	12
16	Applications of Multi-Target Computer-Aided Methodologies in Molecular Design of CNS Drugs. Current Medicinal Chemistry, 2019, 25, 5293-5314.	1.2	14
17	Pro-neurogenic, Memory-Enhancing and Anti-stress Effects of DF302, a Novel Fluorine Gamma-Carboline Derivative with Multi-target Mechanism of Action. Molecular Neurobiology, 2018, 55, 335-349.	1.9	22
18	Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacological Research, 2018, 129, 216-226.	3.1	56

SERGEY O BACHURIN

#	Article	IF	CITATIONS
19	Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Medicinal Research Reviews, 2017, 37, 1186-1225.	5.0	248
20	Focused design of polypharmacophoric neuroprotective compounds: Conjugates of γ-carbolines with carbazole derivatives and tetrahydrocarbazole. Pure and Applied Chemistry, 2017, 89, 1167-1184.	0.9	24
21	Novel conjugates of aminoadamantanes with carbazole derivatives as potential multitarget agents for AD treatment. Scientific Reports, 2017, 7, 45627.	1.6	54
22	Mitochondrial Permeability Transition Pore as a Suitable Targ e t for Neuroprotective Agents Against Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2017, 16, 677-685.	0.8	18
23	Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test. Neural Plasticity, 2016, 2016, 1-17.	1.0	19
24	Esterase profiles of organophosphorus compounds inÂvitro predict their behavior inÂvivo. Chemico-Biological Interactions, 2016, 259, 332-342.	1.7	58
25	Physicochemical property profile for brain permeability: comparative study by different approaches. Journal of Drug Targeting, 2016, 24, 655-662.	2.1	7
26	Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1050-1062.	1.4	57
27	Conjugates of Î ³ -Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease. Scientific Reports, 2015, 5, 13164.	1.6	76
28	Novel Sites of Neuroprotective Action of Dimebon (Latrepirdine). Molecular Neurobiology, 2015, 52, 970-978.	1.9	30
29	Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice. European Neuropsychopharmacology, 2014, 24, 309-320.	0.3	17
30	Dimebon Attenuates the Aβ-Induced Mitochondrial Permeabilization. Current Alzheimer Research, 2014, 11, 422-429.	0.7	38
31	Chronic Administration of Dimebon Ameliorates Pathology in TauP301S Transgenic Mice. Journal of Alzheimer's Disease, 2013, 33, 1041-1049.	1.2	48
32	Novel 1,2,4-Thiadiazole Derivatives as Potent Neuroprotectors: Approach to Creation of Bioavailable Drugs. Molecular Pharmaceutics, 2012, 9, 2156-2167.	2.3	47
33	Dimebon Slows Progression of Proteinopathy in Î ³ -Synuclein Transgenic Mice. Neurotoxicity Research, 2012, 22, 33-42.	1.3	43
34	Methylene blue and dimebon inhibit aggregation of TDPâ€43 in cellular models. FEBS Letters, 2009, 583, 2419-2424.	1.3	102
35	Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer's disease: a randomised, double-blind, placebo-controlled study. Lancet, The, 2008, 372, 207-215.	6.3	440
36	Structural Basis for Understanding Structureâ^ Activity Relationships for the Glutamate Binding Site of the NMDA Receptor. Journal of Medicinal Chemistry, 2002, 45, 3836-3843.	2.9	33

#	Article	IF	CITATIONS
37	Neuroprotective and Cognitionâ€Enhancing Properties of MKâ€801 Flexible Analogs. Annals of the New York Academy of Sciences, 2001, 939, 219-236.	1.8	34