
Xiaoying Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922083/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Effects of Matrix Metalloproteinase-9 Gene Knock-Out on the Proteolysis of Blood–Brain Barrier and White Matter Components after Cerebral Ischemia. Journal of Neuroscience, 2001, 21, 7724-7732.	1.7	917
2	Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature Medicine, 2006, 12, 441-445.	15.2	648
3	Lipoprotein receptor–mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nature Medicine, 2003, 9, 1313-1317.	15.2	434
4	Cortical spreading depression activates and upregulates MMP-9. Journal of Clinical Investigation, 2004, 113, 1447-1455.	3.9	389
5	Effects of Matrix Metalloproteinase-9 Gene Knock-Out on Morphological and Motor Outcomes after Traumatic Brain Injury. Journal of Neuroscience, 2000, 20, 7037-7042.	1.7	343
6	Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology, 2012, 79, 1853-1861.	1.5	310
7	Extracellular proteolysis in brain injury and inflammation: Role for plasminogen activators and matrix metalloproteinases. Journal of Neuroscience Research, 2002, 69, 1-9.	1.3	304
8	Mechanisms of Hemorrhagic Transformation After Tissue Plasminogen Activator Reperfusion Therapy for Ischemic Stroke. Stroke, 2004, 35, 2726-2730.	1.0	294
9	Cortical spreading depression activates and upregulates MMP-9. Journal of Clinical Investigation, 2004, 113, 1447-1455.	3.9	261
10	Evidence for Apoptosis After Intracerebral Hemorrhage in Rat Striatum. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 396-404.	2.4	246
11	Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7582-7587.	3.3	235
12	Tissue Plasminogen Activator Promotes Matrix Metalloproteinase-9 Upregulation After Focal Cerebral Ischemia. Stroke, 2005, 36, 1954-1959.	1.0	215
13	Blood-Brain Barrier Disruption and Matrix Metalloproteinase-9 Expression During Reperfusion Injury. Stroke, 2002, 33, 2711-2717.	1.0	206
14	Extension of the Thrombolytic Time Window With Minocycline in Experimental Stroke. Stroke, 2008, 39, 3372-3377.	1.0	204
15	Triggers and Mediators of Hemorrhagic Transformation in Cerebral Ischemia. Molecular Neurobiology, 2003, 28, 229-244.	1.9	184
16	Reduction of Tissue Plasminogen Activator-Induced Hemorrhage and Brain Injury by Free Radical Spin Trapping after Embolic Focal Cerebral Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 452-457.	2.4	182
17	Hemoglobin-Induced Cytotoxicity in Rat Cerebral Cortical Neurons. Stroke, 2002, 33, 1882-1888.	1.0	181
18	Mitogen-Activated Protein Kinase Inhibition in Traumatic Brain Injury: In Vitro and In Vivo Effects. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 444-452.	2.4	156

#	Article	IF	CITATIONS
19	Astrocytic Induction of Matrix Metalloproteinase-9 and Edema in Brain Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 460-468.	2.4	145
20	Effects of Neuroglobin Overexpression on Acute Brain Injury and Long-Term Outcomes After Focal Cerebral Ischemia. Stroke, 2008, 39, 1869-1874.	1.0	131
21	Double-negative T cells remarkably promote neuroinflammation after ischemic stroke. Proceedings of the United States of America, 2019, 116, 5558-5563.	3.3	128
22	Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nature Medicine, 2016, 22, 1335-1341.	15.2	123
23	Downregulation of Matrix Metalloproteinase-9 and Attenuation of Edema via Inhibition of ERK Mitogen Activated Protein Kinase in Traumatic Brain Injury. Journal of Neurotrauma, 2002, 19, 1411-1419.	1.7	121
24	Neuronal Production of Lipocalin-2 as a Help-Me Signal for Clial Activation. Stroke, 2014, 45, 2085-2092.	1.0	117
25	Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. Journal of Neuroscience Research, 2009, 87, 164-170.	1.3	114
26	Secretion of Matrix Metalloproteinase-2 and -9 after Mechanical Trauma Injury in Rat Cortical Cultures and Involvement of MAP Kinase. Journal of Neurotrauma, 2002, 19, 615-625.	1.7	111
27	FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice. Molecular Neurobiology, 2018, 55, 4702-4717.	1.9	109
28	Stroke-induced immunosuppression and poststroke infection. Stroke and Vascular Neurology, 2018, 3, 34-41.	1.5	105
29	Plasminogen Activator Inhibitor-1 and Thrombotic Cerebrovascular Diseases. Stroke, 2012, 43, 2833-2839.	1.0	94
30	tPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke. Circulation Research, 2021, 128, 62-75.	2.0	81
31	Annexin A2 Combined with Low-Dose tPA Improves Thrombolytic Therapy in a Rat Model of Focal Embolic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1137-1146.	2.4	75
32	Sodium Tanshinone IIA Sulfonate Enhances Effectiveness Rt-PA Treatment in Acute Ischemic Stroke Patients Associated with Ameliorating Blood-Brain Barrier Damage. Translational Stroke Research, 2017, 8, 334-340.	2.3	71
33	Neuroglobin overexpression inhibits oxygen–glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons. Neurobiology of Disease, 2013, 56, 95-103.	2.1	70
34	Induction of matrix metalloproteinase, cytokines and chemokines in rat cortical astrocytes exposed to plasminogen activators. Neuroscience Letters, 2007, 417, 1-5.	1.0	67
35	Effects of Minocycline Plus Tissue Plasminogen Activator Combination Therapy After Focal Embolic Stroke in Type 1 Diabetic Rats. Stroke, 2013, 44, 745-752.	1.0	67
36	Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. Journal of Neuroinflammation, 2017, 14, 248.	3.1	67

#	Article	IF	CITATIONS
37	A Rat Model of Studying Tissue-Type Plasminogen Activator Thrombolysis in Ischemic Stroke With Diabetes. Stroke, 2012, 43, 567-570.	1.0	64
38	Neuroglobin, a Novel Target for Endogenous Neuroprotection against Stroke and Neurodegenerative Disorders. International Journal of Molecular Sciences, 2012, 13, 6995-7014.	1.8	64
39	Increased neuroglobin levels in the cerebral cortex and serum after ischemia–reperfusion insults. Brain Research, 2006, 1078, 219-226.	1.1	60
40	Reduction of Tissue Plasminogen Activator-Induced Matrix Metalloproteinase-9 by Simvastatin in Astrocytes. Stroke, 2006, 37, 1910-1912.	1.0	60
41	Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126. Translational Stroke Research, 2015, 6, 478-484.	2.3	57
42	Distal Occlusion of the Middle Cerebral Artery in Mice: Are We Ready to Assess Long-Term Functional Outcome?. Translational Stroke Research, 2013, 4, 297-307.	2.3	55
43	Tissue type plasminogen activator amplifies hemoglobin-induced neurotoxicity in rat neuronal cultures. Neuroscience Letters, 1999, 274, 79-82.	1.0	53
44	Mitochondrial distribution of neuroglobin and its response to oxygen–glucose deprivation in primary-cultured mouse cortical neurons. Neuroscience, 2012, 218, 235-242.	1.1	53
45	CD47 gene knockout protects against transient focal cerebral ischemia in mice. Experimental Neurology, 2009, 217, 165-170.	2.0	52
46	Characteristics of primary rat microglia isolated from mixed cultures using two different methods. Journal of Neuroinflammation, 2017, 14, 101.	3.1	52
47	Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomedicine and Pharmacotherapy, 2020, 125, 109945.	2.5	51
48	HDAC3 inhibition prevents blood-brain barrier permeability through Nrf2 activation in type 2 diabetes male mice. Journal of Neuroinflammation, 2019, 16, 103.	3.1	50
49	Neuroprotective roles and mechanisms of neuroglobin. Neurological Research, 2009, 31, 122-127.	0.6	47
50	Neuroglobin Is an Endogenous Neuroprotectant for Retinal Ganglion Cells against Glaucomatous Damage. American Journal of Pathology, 2011, 179, 2788-2797.	1.9	47
51	Evaluation of Plasma d-Dimer Plus Fibrinogen in Predicting Acute CVST. International Journal of Stroke, 2014, 9, 166-173.	2.9	46
52	Extracellular proteolytic pathophysiology in the neurovascular unit after stroke. Neurological Research, 2004, 26, 854-861.	0.6	43
53	Mitochondrial Mechanisms of Neuroglobin's Neuroprotection. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	1.9	43
54	Targeting the Neurovascular Unit in Brain Trauma. CNS Neuroscience and Therapeutics, 2015, 21, 304-308.	1.9	43

#	Article	IF	CITATIONS
55	Ginkgo Flavonol Glycosides or Ginkgolides Tend to Differentially Protect Myocardial or Cerebral Ischemia–Reperfusion Injury via Regulation of TWEAK-Fn14 Signaling in Heart and Brain. Frontiers in Pharmacology, 2019, 10, 735.	1.6	42
56	Transcriptional regulation mechanisms of hypoxia-induced neuroglobin gene expression. Biochemical Journal, 2012, 443, 153-164.	1.7	41
57	Neuregulin-1 Effects on Endothelial and Blood–Brain Barrier Permeability After Experimental Injury. Translational Stroke Research, 2012, 3, 119-124.	2.3	40
58	Targeting Extracellular Matrix Proteolysis for Hemorrhagic Complications of tPA Stroke Therapy. CNS and Neurological Disorders - Drug Targets, 2008, 7, 235-242.	0.8	39
59	Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice. Molecular Neurobiology, 2019, 56, 2314-2327.	1.9	38
60	Neuroglobin promotes neurogenesis through Wnt signaling pathway. Cell Death and Disease, 2018, 9, 945.	2.7	37
61	Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke, 2018, 49, 3039-3049.	1.0	36
62	FGF21 Protects against Aggravated Blood-Brain Barrier Disruption after Ischemic Focal Stroke in Diabetic db/db Male Mice via Cerebrovascular PPARγ Activation. International Journal of Molecular Sciences, 2020, 21, 824.	1.8	36
63	Neurovascular effects of CD47 signaling: Promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. Journal of Neuroscience Research, 2009, 87, 2571-2577.	1.3	35
64	12/15-Lipoxygenase Inhibition or Knockout Reduces Warfarin-Associated Hemorrhagic Transformation After Experimental Stroke. Stroke, 2017, 48, 445-451.	1.0	35
65	Roles of Neuroglobin Binding to Mitochondrial Complex III Subunit Cytochrome c1 in Oxygen-Glucose Deprivation-Induced Neurotoxicity in Primary Neurons. Molecular Neurobiology, 2016, 53, 3249-3257.	1.9	34
66	Role of oxidative stress and caspase 3 in CD47â€mediated neuronal cell death. Journal of Neurochemistry, 2009, 108, 430-436.	2.1	32
67	Neuroglobin-overexpression reduces traumatic brain lesion size in mice. BMC Neuroscience, 2012, 13, 67.	0.8	32
68	Association of increased Treg and Th17 with pathogenesis of moyamoya disease. Scientific Reports, 2017, 7, 3071.	1.6	32
69	Proteomic Protease Substrate Profiling of tPA Treatment in Acute Ischemic Stroke Patients: A Step Toward Individualizing Thrombolytic Therapy at the Bedside. Translational Stroke Research, 2010, 1, 268-275.	2.3	29
70	Effects of Tissue Plasminogen Activator and Annexin A2 Combination Therapy on Long-Term Neurological Outcomes of Rat Focal Embolic Stroke. Stroke, 2014, 45, 619-622.	1.0	29
71	Progression of White Matter Hyperintensities Contributes to Lacunar Infarction. , 2018, 9, 444.		29
72	Diabetes Mellitus/Poststroke Hyperglycemia: a Detrimental Factor for tPA Thrombolytic Stroke Therapy. Translational Stroke Research, 2021, 12, 416-427.	2.3	29

#	Article	IF	CITATIONS
73	Early Insulin Glycemic Control Combined With tPA Thrombolysis Reduces Acute Brain Tissue Damages in a Focal Embolic Stroke Model of Diabetic Rats. Stroke, 2013, 44, 255-259.	1.0	28
74	Cerebrovascular degradation of TRKB by MMP9 in the diabetic brain. Journal of Clinical Investigation, 2013, 123, 3373-3377.	3.9	28
75	bFGF Protects Against Oxygen Glucose Deprivation/Reoxygenation-Induced Endothelial Monolayer Permeability via S1PR1-Dependent Mechanisms. Molecular Neurobiology, 2018, 55, 3131-3142.	1.9	28
76	Annexin A2. Stroke, 2010, 41, S54-8.	1.0	27
77	The Altered Reconfiguration Pattern of Brain Modular Architecture Regulates Cognitive Function in Cerebral Small Vessel Disease. Frontiers in Neurology, 2019, 10, 324.	1.1	27
78	Annexin A2 is a Robo4 ligand that modulates ARF6 activation-associated cerebral trans-endothelial permeability. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2048-2060.	2.4	26
79	Profiles of glutamate and GABA efflux in core versus peripheral zones of focal cerebral ischemia in mice. Neuroscience Letters, 2001, 313, 121-124.	1.0	25
80	Oligodendrogenesis after traumatic brain injury. Behavioural Brain Research, 2018, 340, 205-211.	1.2	25
81	JOURNAL CLUB: Evaluation of Diffusion Kurtosis Imaging of Stroke Lesion With Hemodynamic and Metabolic MRI in a Rodent Model of Acute Stroke. American Journal of Roentgenology, 2018, 210, 720-727.	1.0	24
82	Promoting Neuro-Supportive Properties of Astrocytes with Epidermal Growth Factor Hydrogels. Stem Cells Translational Medicine, 2019, 8, 1242-1248.	1.6	24
83	Gammaâ€glutamylcysteine ethyl ester protects cerebral endothelial cells during injury and decreases blood–brain barrier permeability after experimental brain trauma. Journal of Neurochemistry, 2011, 118, 248-255.	2.1	23
84	Transcriptional regulation of mouse neuroglobin gene by cyclic AMP responsive element binding protein (CREB) in N2a cells. Neuroscience Letters, 2013, 534, 333-337.	1.0	23
85	Annexin A2 Plus Low-Dose Tissue Plasminogen Activator Combination Attenuates Cerebrovascular Dysfunction After Focal Embolic Stroke of Rats. Translational Stroke Research, 2017, 8, 549-559.	2.3	23
86	Annexin A2 Deficiency Exacerbates Neuroinflammation and Long-Term Neurological Deficits after Traumatic Brain Injury in Mice. International Journal of Molecular Sciences, 2019, 20, 6125.	1.8	23
87	Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation. Metabolic Brain Disease, 2015, 30, 491-496.	1.4	22
88	TNFAIP1 contributes to the neurotoxicity induced by Aβ25–35 in Neuro2a cells. BMC Neuroscience, 2016, 17, 51.	0.8	22
89	Thrombospondin-1 Gene Deficiency Worsens the Neurological Outcomes of Traumatic Brain Injury in Mice. International Journal of Medical Sciences, 2017, 14, 927-936.	1.1	22
90	Patent Foramen Ovale Attributable Cryptogenic Embolism With Thrombophilia Has Higher Risk for Recurrence and Responds to Closure. JACC: Cardiovascular Interventions, 2020, 13, 2745-2752.	1.1	22

#	Article	IF	CITATIONS
91	Visualization of Clot Lysis in a Rat Embolic Stroke Model. Stroke, 2011, 42, 1110-1115.	1.0	21
92	Combination Approaches to Attenuate Hemorrhagic Transformation After tPA Thrombolytic Therapy in Patients with Poststroke Hyperglycemia/Diabetes. Advances in Pharmacology, 2014, 71, 391-410.	1.2	21
93	Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion. Brain Research, 2016, 1642, 516-523.	1.1	21
94	Establishment of Cell-Based Neuroglobin Promoter Reporter Assay for Neuroprotective Compounds Screening. CNS and Neurological Disorders - Drug Targets, 2016, 15, 629-639.	0.8	21
95	<scp>HDAC</scp> 3 inhibition prevents oxygen glucose deprivation/reoxygenationâ€induced transendothelial permeability by elevating <scp>PPAR</scp> γ activity <i>inÂvitro</i> . Journal of Neurochemistry, 2019, 149, 298-310.	2.1	20
96	Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity. Thrombosis and Haemostasis, 2013, 109, 1070-1078.	1.8	19
97	Glycolytic and Oxidative Phosphorylation Defects Precede the Development of Senescence in Primary Human Brain Microvascular Endothelial Cells. GeroScience, 2022, 44, 1975-1994.	2.1	19
98	CD47 deficiency improves neurological outcomes of traumatic brain injury in mice. Neuroscience Letters, 2017, 643, 125-130.	1.0	18
99	Aging related impairment of brain microvascular bioenergetics involves oxidative phosphorylation and glycolytic pathways. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1410-1424.	2.4	18
100	Caveolae-Mediated Endothelial Transcytosis across the Blood-Brain Barrier in Acute Ischemic Stroke. Journal of Clinical Medicine, 2021, 10, 3795.	1.0	17
101	Intravenous tPA Therapy Does Not Worsen Acute Intracerebral Hemorrhage in Mice. PLoS ONE, 2013, 8, e54203.	1.1	17
102	MMP-9 expression and activity is concurrent with endothelial cell apoptosis in the basilar artery after subarachnoid hemorrhaging in rats. Neurological Sciences, 2015, 36, 1241-1245.	0.9	16
103	Amyloid-β25–35 Upregulates Endogenous Neuroprotectant Neuroglobin via NFκB Activation in vitro. Journal of Alzheimer's Disease, 2018, 64, 1163-1174.	1.2	16
104	Augmented Brain Infiltration and Activation of Leukocytes After Cerebral Ischemia in Type 2 Diabetic Mice. Frontiers in Immunology, 2019, 10, 2392.	2.2	16
105	Development of fast multiâ€slice apparent T ₁ mapping for improved arterial spin labeling MRI measurement of cerebral blood flow. Magnetic Resonance in Medicine, 2021, 85, 1571-1580.	1.9	16
106	Effects of Controlled Cortical Impact on the Mouse Brain Vasculome. Journal of Neurotrauma, 2016, 33, 1303-1316.	1.7	15
107	Dual Antiplatelet Therapy Increases Hemorrhagic Transformation Following Thrombolytic Treatment in Experimental Stroke. Stroke, 2019, 50, 3650-3653.	1.0	15
108	Activation of microglial Tollâ€like receptor 3 promotes neuronal survival against cerebral ischemia. Journal of Neurochemistry, 2016, 136, 851-858.	2.1	14

#	Article	IF	CITATIONS
109	Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology, 2020, 94, e1281-e1293.	1.5	14
110	Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro. Metabolic Brain Disease, 2015, 30, 829-837.	1.4	13
111	Recombinant annexin A2 inhibits peripheral leukocyte activation and brain infiltration after traumatic brain injury. Journal of Neuroinflammation, 2021, 18, 173.	3.1	12
112	An integrated hypothesis for miR-126 in vascular disease. Medical Research Archives, 2020, 8, .	0.1	11
113	Chapter 6 Reperfusion injury after stroke: neurovascular proteases and the blood–brain barrier. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 92, 117-136.	1.0	10
114	Combination Low-Dose Tissue-Type Plasminogen Activator Plus Annexin A2 for Improving Thrombolytic Stroke Therapy. Frontiers in Cellular Neuroscience, 2015, 9, 397.	1.8	10
115	Low dose tPA plus annexin A2 combination attenuates tPA delayed treatment- associated hemorrhage and improves recovery in rat embolic focal stroke. Neuroscience Letters, 2015, 602, 73-78.	1.0	10
116	QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats. Biomedicine and Pharmacotherapy, 2021, 141, 111941.	2.5	10
117	Opening the time window. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2539-2540.	2.4	9
118	Propofol Enhances Hemoglobin-Induced Cytotoxicity in Neurons. Anesthesia and Analgesia, 2016, 122, 1024-1030.	1.1	8
119	A case of Susac's syndrome in a Chinese male. Journal of the Neurological Sciences, 2012, 314, 181-182.	0.3	7
120	Reduced Microvascular Volume and Hemispherically Deficient Vasoreactivity to Hypercapnia in Acute Ischemia: MRI Study Using Permanent Middle Cerebral Artery Occlusion Rat Model. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1033-1043.	2.4	7
121	Estrogenic effects of phytoestrogens derived from Flemingia strobilifera in MCF-7 cells and immature rats. Archives of Pharmacal Research, 2018, 41, 519-529.	2.7	7
122	The protective effect of isoflurane pretreatment on liver IRI by suppressing noncanonical pyroptosis of liver macrophages. International Immunopharmacology, 2021, 99, 107977.	1.7	7
123	Clinical differences between acute CVST and non-thrombotic CVSS. Clinical Neurology and Neurosurgery, 2012, 114, 1257-1262.	0.6	6
124	Recombinant Annexin A2 Administration Improves Neurological Outcomes After Traumatic Brain Injury in Mice. Frontiers in Pharmacology, 2021, 12, 708469.	1.6	6
125	Delayed rFGF21 Administration Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice. Translational Stroke Research, 2022, 13, 311-325.	2.3	6
126	Diabetes mellitus: A common comorbidity increasing hemorrhagic transformation after tPA thrombolytic therapy for ischemic stroke. Brain Hemorrhages, 2021, 2, 116-123.	0.4	6

#	Article	IF	CITATIONS
127	Update: Microdialysis for Monitoring Cerebral Metabolic Dysfunction after Subarachnoid Hemorrhage. Journal of Clinical Medicine, 2021, 10, 100.	1.0	5
128	Estrogenic properties ofPrunus cerasoidesextract and its constituents in MCFâ€7 cell and evaluation in estrogenâ€deprived rodent models. Phytotherapy Research, 2020, 34, 1347-1357.	2.8	4
129	T-Lymphocyte Interactions with the Neurovascular Unit: Implications in Intracerebral Hemorrhage. Cells, 2022, 11, 2011.	1.8	4
130	From cell to cell: The breakdown of intercellular connectivity after stroke and how to regain contact. Brain Research, 2015, 1623, 1-2.	1.1	2
131	Efficacy of High-intensity Statin Use for Transient Ischemic Attack Patients with Positive Diffusion-weighted Imaging. Scientific Reports, 2019, 9, 1173.	1.6	2
132	EphrinB2-EphB2 signaling for dendrite protection after neuronal ischemia in vivo and oxygen-glucose deprivation in vitro. Journal of Cerebral Blood Flow and Metabolism, 2020, 41, 0271678X2097311.	2.4	2
133	CVST, Distinguished from Nonthrombotic Cvss before Treatment – a Must. International Journal of Stroke, 2012, 7, 274-274.	2.9	1
134	Neuroglobin: A Novel Target for Endogenous Neuroprotection. , 2012, , 353-372.		1
135	Response to Letter by Kelsen et al. Stroke, 2008, 39, .	1.0	0
136	Abstract WMP35: Low Level Laser Therapy (LLLT) Protects Against Oxygen-Glucose Deprivation-Induced Neuron Death by Modulating Nitric Oxide and ROS Production In Vitro. Stroke, 2013, 44, .	1.0	0
137	Abstract TP66: Quantitative Proteomic Profile of Tissue Plasminogen Activator (tPA) Responders. Stroke, 2013, 44, .	1.0	0
138	Abstract 47: Proteomic Profiling of Acute Stroke Patients Highlights the Importance of vWF and vWF-Cleaving Protease (ADAMTS13) in Thrombolysis. Stroke, 2014, 45, .	1.0	0