Irving H Zucker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8922071/publications.pdf Version: 2024-02-01

		218677	214800
121	2,410	26	47
papers	citations	h-index	g-index
123	123	123	2586
all docs	docs citations	times ranked	citing authors

IDVINC H THERED

#	Article	IF	CITATIONS
1	Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats With Heart Failure. Hypertension, 2014, 64, 745-755.	2.7	158
2	Novel Mechanisms of Sympathetic Regulation in Chronic Heart Failure. Hypertension, 2006, 48, 1005-1011.	2.7	156
3	Chronic Baroreceptor Activation Enhances Survival in Dogs With Pacing-Induced Heart Failure. Hypertension, 2007, 50, 904-910.	2.7	132
4	Exercise Training Normalizes Sympathetic Outflow by Central Antioxidant Mechanisms in Rabbits With Pacing-Induced Chronic Heart Failure. Circulation, 2007, 115, 3095-3102.	1.6	130
5	The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide. Progress in Biophysics and Molecular Biology, 2004, 84, 217-232.	2.9	128
6	Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H928-H939.	3.2	111
7	Imbalance of Angiotensin Type 1 Receptor and Angiotensin II Type 2 Receptor in the Rostral Ventrolateral Medulla. Hypertension, 2008, 52, 708-714.	2.7	106
8	The central renin–angiotensin system and sympathetic nerve activity in chronic heart failure. Clinical Science, 2014, 126, 695-706.	4.3	105
9	Neurohumoral Stimulation. Heart Failure Clinics, 2012, 8, 87-99.	2.1	95
10	Regulation of Sympathetic Nerve Activity in Heart Failure. Circulation Research, 1999, 84, 417-423.	4.5	80
11	The Regulation of Sympathetic Outflow in Heart Failure. Annals of the New York Academy of Sciences, 2001, 940, 431-443.	3.8	76
12	Guidelines for animal exercise and training protocols for cardiovascular studies. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1100-H1138.	3.2	66
13	Angiotensin II Enhances Baroreflex Control of Sympathetic Outflow in Heart Failure. Hypertension, 1997, 29, 564-569.	2.7	60
14	Exercise Training and Sympathetic Regulation in Experimental Heart Failure. Exercise and Sport Sciences Reviews, 2004, 32, 107-111.	3.0	57
15	Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2664-H2671.	3.2	53
16	Selective <i>Nrf2</i> Gene Deletion in the Rostral Ventrolateral Medulla Evokes Hypertension and Sympathoexcitation in Mice. Hypertension, 2017, 69, 1198-1206.	2.7	52
17	Cardiac sympathetic afferent reflex control of cardiac function in normal and chronic heart failure states. Journal of Physiology, 2017, 595, 2519-2534.	2.9	50
18	Activation of Central Angiotensin Type 2 Receptors by Compound 21 Improves Arterial Baroreflex Sensitivity in Rats With Heart Failure. American Journal of Hypertension, 2014, 27, 1248-1256.	2.0	45

#	Article	IF	CITATIONS
19	Extracellular vesicular MicroRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. Journal of Molecular and Cellular Cardiology, 2020, 143, 120-131.	1.9	44
20	Integrative Physiological Aspects of Brain RAS in Hypertension. Current Hypertension Reports, 2018, 20, 10.	3.5	41
21	Therapeutic Effects of Nrf2 Activation by Bardoxolone Methyl in Chronic Heart Failure. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 642-651.	2.5	41
22	Modulation of angiotensin II signaling following exercise training in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H781-H791.	3.2	38
23	Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure. Autonomic Neuroscience: Basic and Clinical, 2015, 188, 44-50.	2.8	35
24	Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle. Journal of Applied Physiology, 2019, 126, 477-486.	2.5	35
25	Functional, proteomic and bioinformatic analyses of Nrf2―and Keap1―null skeletal muscle. Journal of Physiology, 2020, 598, 5427-5451.	2.9	34
26	Angiotensin II–nitric oxide interactions in the control of sympathetic outflow in heart failure. , 2000, 5, 27-43.		31
27	Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radical Biology and Medicine, 2021, 167, 218-231.	2.9	30
28	Upregulating Nrf2 in the RVLM ameliorates sympatho-excitation in mice with chronic heart failure. Free Radical Biology and Medicine, 2019, 141, 84-92.	2.9	29
29	Novel mechanisms of sympatho-excitation in chronic heart failure. Heart Failure Monitor, 2002, 3, 2-7.	0.7	26
30	Revised guidelines to enhance the rigor and reproducibility of research published in American Physiological Society journals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1251-R1253.	1.8	21
31	Central Angiotensin-II Increases Blood Pressure and Sympathetic Outflow via Rho Kinase Activation in Conscious Rabbits. Hypertension, 2016, 68, 1271-1280.	2.7	20
32	Influence of brainâ€derived neurotrophic factorâ€tyrosine receptor kinase B signalling in the nucleus tractus solitarius on baroreflex sensitivity in rats with chronic heart failure. Journal of Physiology, 2016, 594, 5711-5725.	2.9	19
33	Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H259-H266.	3.2	18
34	Exercise training upregulates Nrf2 protein in the rostral ventrolateral medulla of mice with heart failure. Journal of Applied Physiology, 2019, 127, 1349-1359.	2.5	17
35	Research Opportunities in Autonomic Neural Mechanisms of CardiopulmonaryÂRegulation. JACC Basic To Translational Science, 2022, 7, 265-293.	4.1	17
36	Skeletal Muscle Nrf2 Contributes to Exercise-Evoked Systemic Antioxidant Defense Via Extracellular Vesicular Communication. Exercise and Sport Sciences Reviews, 2021, 49, 213-222.	3.0	16

#	Article	IF	CITATIONS
37	Sympatho-excitatory response to pulmonary chemosensitive spinal afferent activation in anesthetized, vagotomized rats. Physiological Reports, 2018, 6, e13742.	1.7	15
38	Exercise training and renal denervation attenuate the expression of angiotensin II Type 1 and 2 receptors in rabbits with chronic heart failure. FASEB Journal, 2008, 22, 159-159.	0.5	15
39	BDNF contributes to angiotensin II-mediated reductions in peak voltage-gated K+current in cultured CATH.a cells. Physiological Reports, 2015, 3, e12598.	1.7	14
40	Benefits of exercise training on cardiovascular dysfunction: molecular and integrative. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1027-H1031.	3.2	14
41	TRPV1 (Transient Receptor Potential Vanilloid 1) Cardiac Spinal Afferents Contribute to Hypertension in Spontaneous Hypertensive Rat. Hypertension, 2019, 74, 910-920.	2.7	13
42	Identification of Cardiac Expression Pattern of Transient Receptor Potential Vanilloid Type 1 (TRPV1) Receptor using a Transgenic Reporter Mouse Model. Neuroscience Letters, 2020, 737, 135320.	2.1	13
43	Central TrkB blockade attenuates ICV angiotensin II-hypertension and sympathetic nerve activity in male Sprague-Dawley rats. Autonomic Neuroscience: Basic and Clinical, 2017, 205, 77-86.	2.8	11
44	Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers. Biomaterials, 2016, 75, 58-70.	11.4	10
45	Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves. Autonomic Neuroscience: Basic and Clinical, 2017, 204, 17-24.	2.8	10
46	Overexpression of Central ACE2 (Angiotensin-Converting Enzyme 2) Attenuates the Pressor Response to Chronic Central Infusion of Ang II (Angiotensin II). Hypertension, 2020, 76, 1514-1525.	2.7	10
47	Timeline of Multi-Organ Plasma Extravasation After Bleomycin-Induced Acute Lung Injury. Frontiers in Physiology, 2022, 13, 777072.	2.8	10
48	NEURAL CONTROL OF THE CIRCULATION IN HEART FAILURE AND CORONARY ISCHAEMIA: INTRODUCTION. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 685-687.	1.9	9
49	A day of immersive physiology experiments increases knowledge and excitement towards physiology and scientific careers in Native American students. American Journal of Physiology - Advances in Physiology Education, 2017, 41, 137-144.	1.6	9
50	Safety and efficacy of renal denervation in patients with heart failure with reduced ejection fraction (HFrEF): A systematic review and meta-analysis. Heliyon, 2022, 8, e08847.	3.2	8
51	Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H447-H455.	3.2	7
52	An American Physiological Society cross-journal Call for Papers on "Deconstructing Organs: Single-Cell Analyses, Decellularized Organs, Organoids, and Organ-on-a-Chip Models― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L266-L272.	2.9	7
53	Macrophage activation in stellate ganglia contributes to lung injuryâ€induced arrhythmogenesis in male rats. Acta Physiologica, 2021, 232, e13657.	3.8	7
54	Disruption of cardiovascular circadian rhythms in mice post myocardial infarction: relationship with central angiotensin II receptor expression. Physiological Reports, 2014, 2, e12210.	1.7	6

#	Article	IF	CITATIONS
55	Exercise training normalizes renal blood flow responses to acute hypoxia in experimental heart failure: role of the α ₁ -adrenergic receptor. Journal of Applied Physiology, 2016, 120, 334-343.	2.5	6
56	Sympathoexcitation in response to cardiac and pulmonary afferent stimulation of TRPA1 channels is attenuated in rats with chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H862-H872.	3.2	6
57	Quantification of Renal Sympathetic Vasomotion as a Novel End Point for Renal Denervation. Hypertension, 2020, 76, 1247-1255.	2.7	5
58	The American Journal of Physiology-Heart and Circulatory Physiology: a long history, a bright future. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1103-H1104.	3.2	4
59	Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R156-R166.	1.8	4
60	Why publish in the <i>American Journal of Physiology-Heart and Circulatory Physiology</i> ?. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H221-H223.	3.2	4
61	Is Teamwork Still Possible during a Global Pandemic?. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1-H2.	3.2	4
62	CORP: Assessing author compliance with data presentation guidelines for manuscript figures. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1051-H1058.	3.2	2
63	Call for papers on racial differences in cardiovascular and cerebrovascular physiology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H249-H250.	3.2	2
64	Sympathoexcitation in chronic heart failure: Ang II induced inhibition of voltageâ€gated K + channel, an in vivo and in vitro study. FASEB Journal, 2006, 20, .	0.5	2
65	Sympathomodulation in heart failure: A role for stellate ganglia Nrf2. FASEB Journal, 2019, 33, 564.5.	0.5	2
66	GLP-1 (Glucagon-Like Peptide-1) Plays a Role in Carotid Chemoreceptor–Mediated Sympathoexcitation and Hypertension. Circulation Research, 2022, 130, 708-710.	4.5	2
67	Demystifying the publishing process: a primer for early career investigators. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H529-H531.	3.2	1
68	Therapeutic microRNAâ€based strategies in cardiovascular disease discriminate sex and age difference. Journal of Physiology, 2016, 594, 5731-5732.	2.9	1
69	Angiotensin II induces upregulation of AT1 receptors via the sequential activation of transcription factors NFkB, Elkâ€1 and APâ€1 in Cath.a cells. FASEB Journal, 2009, 23, 609.15.	0.5	1
70	Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing induced chronic heart failure. FASEB Journal, 2009, 23, 958.1.	0.5	1
71	Computerized Cardiovascular Dog Lab. MedEdPORTAL: the Journal of Teaching and Learning Resources, 0, , .	1.2	1
72	Bardoxolone activates cardiac Nrf2, increases antioxidant expression and lowers arterial pressure in rats with heart failure. FASEB Journal, 2018, 32, 903.11.	0.5	1

#	Article	IF	CITATIONS
73	Proteomic and Functional Analyses of Keap1â€Nrf2 Pathway in Skeletal Muscle. FASEB Journal, 2019, 33, 868.30.	0.5	1
74	Data on macrophage mediated muscle transfection upon delivery of naked plasmid DNA with block copolymers. Data in Brief, 2016, 7, 1269-1282.	1.0	0
75	Guidelines in cardiovascular research, a first for the <i>American Journal of Physiology-Heart and Circulatory Physiology</i> . American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1030-H1030.	3.2	0
76	Renal Sympathetic Denervation Does Not Consistently Affect Renal Input Impedance. FASEB Journal, 2021, 35, .	0.5	0
77	The Nasopharyngeal Reflex is Impaired with the Progression of Chronic Heart Failure in Conscious Rabbits. FASEB Journal, 2006, 20, A1203.	0.5	0
78	Effect of exercise training on skeletal muscle pressor reflexes in chronic heart failure rats. FASEB Journal, 2006, 20, A1196.	0.5	0
79	Heart Rate Variability and Central Angiotensin II Receptors in Heart Failure: Role of Exercise Training. FASEB Journal, 2006, 20, A393.	0.5	0
80	Simvastatin Upregulates the Expression of nNOS and eNOS in Neuronal Cells. FASEB Journal, 2007, 21, A1267.	0.5	0
81	Central treatment of simvastatin normalizes sympathetic outflow in CHF rabbits by a nNOS mechanism. FASEB Journal, 2007, 21, A1267.	0.5	0
82	Angiotensin II induces AT1 receptor upregulation by oxidative stress and activation of AP1 and NFâ€₽̂B in two neuronal cell lines. FASEB Journal, 2007, 21, A889.	0.5	0
83	Skeletal muscle superoxide is involved in the enhanced exercise pressor reflex in heart failure rats. FASEB Journal, 2007, 21, A570.	0.5	0
84	Role of ErbB tyrosine kinase receptors in agingâ€related cardiac dysfunction. FASEB Journal, 2008, 22, 1155.2.	0.5	0
85	Exercise training improves the exercise pressor reflex dysfunction via ameliorating the skeletal muscle oxidative stress in chronic heart failure. FASEB Journal, 2008, 22, 952.8.	0.5	0
86	Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing induced chronic heart failure. FASEB Journal, 2008, 22, 952.7.	0.5	0
87	Increased neuronal discharge in the RVLM of rats with chronic heart failure is mediated by AT1R. FASEB Journal, 2008, 22, 1169.3.	0.5	0
88	Tempol normalizes renal vascular resistance in rabbits with pacing induced heart failure. FASEB Journal, 2009, 23, .	0.5	0
89	Selective over expression of central ACE2 prevents baroreflex dysfunction in the chronic heart failure. FASEB Journal, 2009, 23, 610.2.	0.5	0
90	Skeletal Muscle Overexpression of SOD Normalizes the Exaggerated Exercise Pressor Reflex in Rats with Heart Failure. FASEB Journal, 2009, 23, 787.13.	0.5	0

#	Article	IF	CITATIONS
91	Central angiotensin type 2 receptor stimulation reduces blood pressure and norepinephrine excretion in conscious normal rats. FASEB Journal, 2010, 24, 808.6.	0.5	Ο
92	p22phox inhibition in Skeletal Muscle Normalizes the Exaggerated Exercise Pressor Reflex in Chronic Heart Failure. FASEB Journal, 2010, 24, 619.1.	0.5	0
93	Central angiotensin onverting enzyme 2 overexpression decreases blood pressure and enhances baroreflex function in mice with chronic heart failure. FASEB Journal, 2010, 24, 809.20.	0.5	Ο
94	Intrarenal superoxide dismutase normalizes renal vascular resistance in rabbits with pacing induced heart failure. FASEB Journal, 2010, 24, lb710.	0.5	0
95	Alteration in Skeletal Muscle Afferents in Rats with Chronic Heart Failure. FASEB Journal, 2011, 25, 1054.10.	0.5	Ο
96	Mas receptor in the RVLM mediates sympathoâ€inhibitory effect in mice with ACE2 overexpression during heart failure. FASEB Journal, 2012, 26, lb797.	0.5	0
97	Spinal Cord GABA Receptors Inhibit the Exercise Pressor Reflex in Decerebrate Rats. FASEB Journal, 2012, 26, 1087.6.	0.5	Ο
98	Simvastatin Treatment Attenuates Increased Respiratory Variability and Apnea/Hypopnea Index in Rats with Congestive Heart Failure. FASEB Journal, 2012, 26, lb829.	0.5	0
99	Blunted Arterial Baroreflex Sensitivity: A Contributor to Hypertension in Angiotensin Type 2 Receptor Knockout Mice. FASEB Journal, 2012, 26, 893.7.	0.5	Ο
100	Rho Kinase Inhibition Lowers Sympathetic Nerve Activity in Conscious Rabbits with Chronic Heart Failure. FASEB Journal, 2012, 26, 703.7.	0.5	0
101	Differential adrenergic signaling in the regulation of renal blood flow in rats with heart failure. FASEB Journal, 2012, 26, 1101.7.	0.5	Ο
102	Imbalance of Angiotensin Receptor Expression and Function in the Spinal Cord: Potential Mechanism of Sympathetic Overactivity in CHF Rats. FASEB Journal, 2012, 26, 893.10.	0.5	0
103	Nonclassical G Protein Coupled Receptor Kinase 5 Regulation of Angiotensin II type 1 Receptor in CATH.a Neurons. FASEB Journal, 2012, 26, 703.9.	0.5	0
104	Interaction between angiotensin II (AngII) and brainâ€derived neurotrophic factor (BDNF) in modulating K + currents. FASEB Journal, 2013, 27, lb834.	0.5	0
105	The Exaggerated Exercise Pressor Reflex in Heart Failure: MAPK Activation in Peripheral Dorsal Root Ganglia. FASEB Journal, 2013, 27, 1118.9.	0.5	0
106	Unilateral renal denervation (DNx) improves autonomic balance in conscious rabbits with chronic heart failure (CHF). FASEB Journal, 2013, 27, 927.16.	0.5	0
107	Central Rho kinase inhibition improves baroreflex gain and cardiac autonomic balance in conscious rabbits with CHF. FASEB Journal, 2013, 27, lb843.	0.5	0
108	Crossâ€ŧalk between central ACE/ACE2 and RhoA/ROCKII Pathways in Chronic Heart Failure FASEB Journal, 2013, 27, lb839.	0.5	0

#	Article	IF	CITATIONS
109	Renal Denervation Increases Renal Blood Flow Variability in Conscious Rabbits. FASEB Journal, 2015, 29, 658.6.	0.5	0
110	Potassium Channel Dysfunction in Dorsal Root Ganglia Contributes to the Exaggerated Exercise Pressor Reflex in Heart Failure. FASEB Journal, 2015, 29, 827.1.	0.5	0
111	Overexpression of Nrf2 Targeting Glutamatergic Neurons in the RVLM Ameliorates Sympathetic Regulation in Mice With Chronic Heart Failure. FASEB Journal, 2018, 32, 593.3.	0.5	0
112	Exosomal MicroRNAâ€⊋7a Passenger Strand Was Upregulated in Chronic Heart Failure. FASEB Journal, 2018, 32, 903.7.	0.5	0
113	Superoxideâ€Dependent Redox Signaling in the Supraoptic Nucleus Is Associated with the Neuroendocrine Response to Water and Electrolyte Imbalance. FASEB Journal, 2018, 32, 763.1.	0.5	0
114	TRPA1â€Induced Pulmonary Spinal Sympathetic Afferent Activation is Attenuated in Rats with Chronic Heart Failure. FASEB Journal, 2018, 32, 593.1.	0.5	0
115	Thoracic TRPV1 Receptor Spinal Afferent Ablation Prevents the Development and Progression of Hypertension in SHR but Not in Ang Ilâ€infused Rats. FASEB Journal, 2018, 32, 885.4.	0.5	0
116	Muscle Sensory Dysfunction in a Rat Model of Peripheral Arterial Disease: the Role of Macrophage Activation in Chronic Limb Pain. FASEB Journal, 2019, 33, 540.5.	0.5	0
117	It's been a great ride and AJP-Heart and Circulatory Physiology is in great hands. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1274-H1275.	3.2	0
118	Special issue "Extracellular Vesicles and Exosomes― Free Radical Biology and Medicine, 2022, 184, 12-13.	2.9	0
119	Timeâ€dependent Characterization of Respiratory Parameters post Bleomycinâ€induced Lung Injury. FASEB Journal, 2022, 36, .	0.5	0
120	Timeline of Multiâ€organ Plasma Extravasation After Bleomycinâ€Induced Acute Lung Injury. FASEB Journal, 2022, 36, .	0.5	0
121	Overexpression of Skeletal Muscle Nrf2 Protects Against Agingâ€Associated Dysfunction in Skeletal Muscle and Heart. FASEB Journal, 2022, 36, .	0.5	0