Haofeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/892205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Creep–Cyclic Plasticity and Damage Assessment of an SS304 Weldolet. Journal of Pressure Vessel Technology, Transactions of the ASME, 2022, 144, .	0.6	1
2	Mechanical Degradation Behavior of Single Crystal LiNixMnyCozO2 Cathode in Li-Ion Battery by Indentation Analysis. Journal of Pressure Vessel Technology, Transactions of the ASME, 2022, 144, .	0.6	2
3	Shakedown analysis of bounded kinematic hardening engineering structures under complex cyclic loads: Theoretical aspects and a direct approach. Engineering Structures, 2022, 256, 114034.	5.3	4
4	Shakedown and ratcheting analysis of Printed Circuit Heat Exchangers under multiple cyclic mechanical and thermal loads. International Journal of Pressure Vessels and Piping, 2022, 199, 104723.	2.6	4
5	Shakedown limit of elbow pipe under coupled cyclic thermal-mechanical loading based on the LMM. International Journal of Pressure Vessels and Piping, 2022, 199, 104747.	2.6	2
6	Shakedown analysis and assessment method of four-stress parameters Bree-type problems. International Journal of Mechanical Sciences, 2022, 229, 107518.	6.7	3
7	A unified direct method for ratchet and fatigue analysis of structures subjected to arbitrary cyclic thermal-mechanical load histories. International Journal of Mechanical Sciences, 2021, 194, 106190.	6.7	13
8	On the study of cyclic plasticity behaviour of primary electrode particle for lithium-ion battery. European Journal of Mechanics, A/Solids, 2021, 86, 104175.	3.7	5
9	Numerical analysis of the cyclic mechanical damage of Li-ion battery electrode and experimental validation. International Journal of Fatigue, 2021, 142, 105915.	5.7	14
10	The effects of tensile and compressive dwells on creep-fatigue behavior and fracture mechanism in welded joint of P92 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 813, 141129.	5.6	26
11	On the tensile behaviors of 2D twill woven SiO2f/SiO2 composites at ambient and elevated temperatures: Mesoscale analysis and in situ experimental investigation. Ceramics International, 2021, 47, 12680-12694.	4.8	13
12	Shakedown, ratcheting and fatigue analysis of cathode coating in lithium-ion battery under steady charging-discharging process. Journal of the Mechanics and Physics of Solids, 2021, 150, 104366.	4.8	14
13	A direct approach to progressive buckling design considering ratcheting deformation. Thin-Walled Structures, 2021, 163, 107656.	5.3	4
14	Characteristics and implications of material mismatch on mode II creep crack tip field: Theoretical analysis and numerical investigation. Theoretical and Applied Fracture Mechanics, 2021, 114, 103035.	4.7	1
15	Shakedown analysis of modified Bree problems involving thermal membrane stress and generalized loading conditions. International Journal of Pressure Vessels and Piping, 2021, 192, 104432.	2.6	3
16	Creep rupture assessment of cyclically heated 3D pressure pipelines with volumetric defects using a direct numerical approach. International Journal of Pressure Vessels and Piping, 2021, 192, 104387.	2.6	1
17	Study on the effect of welding residual stress on creep-cyclic plasticity behaviour. International Journal of Pressure Vessels and Piping, 2021, 193, 104444.	2.6	4
18	Creep-Fatigue Interaction Effects On Pressure-Reducing Valve Under Cyclic Thermo-Mechanical Loadings Using Direct Cyclic Method. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, , .	0.6	0

#	Article	IF	CITATIONS
19	The Linear Matching Method and Its Software Tool for Creep Fatigue Damage Assessment. Lecture Notes in Applied and Computational Mechanics, 2021, , 25-43.	2.2	0
20	Stress Compensation Method for Shakedown Analysis and Its Engineering Applications. Lecture Notes in Applied and Computational Mechanics, 2021, , 137-166.	2.2	0
21	Investigating the Effects of Cyclic Thermo-Mechanical Loading on Cyclic Plastic Behavior of a Ninety-Degree Back-to-Back Pipe Bend System. Journal of Pressure Vessel Technology, Transactions of the ASME, 2020, 142, .	0.6	4
22	Constraint modified time dependent failure assessment diagram (TDFAD) based on C(t)-A2(t) theory for creep crack. International Journal of Mechanical Sciences, 2020, 165, 105193.	6.7	9
23	A direct approach to the evaluation of structural shakedown limit considering limited kinematic hardening and non-isothermal effect. European Journal of Mechanics, A/Solids, 2020, 79, 103877.	3.7	13
24	Capturing and Micromechanical Analysis of the Crack-Branching Behavior in Welded Joints. Metals, 2020, 10, 1308.	2.3	1
25	Ratcheting behavior of pressurized lateral nozzle of cylinder with local wall thinning under different loading paths. Engineering Failure Analysis, 2020, 117, 104947.	4.0	3
26	A study on the matching of constraint between steam turbine blade and laboratory specimens. Advances in Mechanical Engineering, 2020, 12, 168781402092200.	1.6	2
27	On the Plastic Strain Accumulation in Notched Bars During High-Temperature Creep Dwell. Journal of Mechanics, 2020, 36, 167-176.	1.4	4
28	Remaining creep properties and fracture behaviour of P92 steel welded joint under prior low cycle fatigue loading. Journal of Materials Research and Technology, 2020, 9, 7887-7899.	5.8	18
29	Numerical schemes based on the stress compensation method framework for creep rupture assessment. European Journal of Mechanics, A/Solids, 2020, 83, 104014.	3.7	3
30	Effect Range of the Material Constraint in Different Strength Mismatched Laboratory Specimens. Applied Sciences (Switzerland), 2020, 10, 2434.	2.5	2
31	The diffusion induced stress and cracking behaviour of primary particle for Li-ion battery electrode. International Journal of Mechanical Sciences, 2020, 178, 105608.	6.7	38
32	Limit and Shakedown Analysis of 45-Degree Piping Elbows Under Internal Pressure and In-Plane Bending. Journal of Pressure Vessel Technology, Transactions of the ASME, 2020, 142, .	0.6	3
33	Assessment on Strain-Based and Stress-Based Design Strategies for Components at Elevated Temperatures: A Comparative Study. Journal of Pressure Vessel Technology, Transactions of the ASME, 2020, 142, .	0.6	4
34	Burst Pressures of High-Density Polyethylene Pipes Considering the Notch Effect: Testing and Prediction. Journal of Testing and Evaluation, 2020, 48, 4179-4189.	0.7	2
35	A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures. Computational Mechanics, 2019, 63, 1-22.	4.0	22
36	Microstructural damage mechanics-based model for creep fracture of 9%Cr steel under prior fatigue loading. Theoretical and Applied Fracture Mechanics, 2019, 103, 102269.	4.7	9

#	Article	IF	CITATIONS
37	Creep-fatigue endurance of a superheater tube plate under non-isothermal loading and multi-dwell condition. International Journal of Mechanical Sciences, 2019, 161-162, 105048.	6.7	4
38	A modified constitutive model for tensile deformation of 9%Cr steel under prior fatigue loading. Mechanics of Materials, 2019, 136, 103093.	3.2	13
39	On the creep fatigue and creep rupture behaviours of 9–12% Cr steam turbine rotor. European Journal of Mechanics, A/Solids, 2019, 76, 263-278.	3.7	27
40	Shakedown analysis of a torispherical head with a piping nozzle under combined loads by the stress compensation method. International Journal of Pressure Vessels and Piping, 2019, 172, 107-118.	2.6	6
41	Multi-axial creep-fatigue life prediction considering history-dependent damage evolution: A new numerical procedure and experimental validation. Journal of the Mechanics and Physics of Solids, 2019, 131, 313-336.	4.8	51
42	Cyclic plasticity and creep-cyclic plasticity behaviours of the SiC/Ti-6242 particulate reinforced titanium matrix composites under thermo-mechanical loadings. Composite Structures, 2019, 218, 204-216.	5.8	14
43	Evaluation of the effect of various prior creep-fatigue interaction damages on subsequent tensile and creep properties of 9%Cr steel. International Journal of Fatigue, 2019, 125, 440-453.	5.7	40
44	A novel fatigue assessment approach by Direct Steady Cycle Analysis (DSCA) considering the temperature-dependent strain hardening effect. International Journal of Pressure Vessels and Piping, 2019, 170, 66-72.	2.6	9
45	A comparative study on the cyclic plasticity and fatigue failure behavior of different subzones in CrNiMoV steel welded joint. International Journal of Mechanical Sciences, 2019, 150, 66-78.	6.7	27
46	Creep-fatigue and cyclically enhanced creep mechanisms in aluminium based metal matrix composites. European Journal of Mechanics, A/Solids, 2019, 74, 66-80.	3.7	22
47	Shakedown analysis of elastic-plastic structures considering the effect of temperature on yield strength: Theory, method and applications. European Journal of Mechanics, A/Solids, 2019, 73, 318-330.	3.7	11
48	Enhanced fatigue damage under cyclic thermo-mechanical loading at high temperature by structural creep recovery mechanism. International Journal of Fatigue, 2018, 113, 149-159.	5.7	10
49	Shakedown analysis of engineering structures under multiple variable mechanical and thermal loads using the stress compensation method. International Journal of Mechanical Sciences, 2018, 140, 361-375.	6.7	33
50	Shakedown, ratchet, and limit analyses of 90° back-to-back pipe bends under cyclic in-plane opening bending and steady internal pressure. European Journal of Mechanics, A/Solids, 2018, 67, 231-242.	3.7	17
51	Shakedown analysis of pressure pipeline with an oblique nozzle at elevated temperatures using the linear matching method. International Journal of Pressure Vessels and Piping, 2018, 159, 55-66.	2.6	8
52	Surrogate assisted optimization of particle reinforced metal matrix composites. , 2018, , .		2
53	Creep Fatigue Damage Assessment of V-Butt Weld Pipe With an Extended Direct Steady Cycle Analysis. , 2018, , .		0
54	Study of ratchet limit and cyclic response of welded pipe. International Journal of Pressure Vessels and Piping, 2018, 168, 49-58.	2.6	6

#	Article	IF	CITATIONS
55	A new four-dimensional ratcheting boundary: Derivation and numerical validation. European Journal of Mechanics, A/Solids, 2018, 71, 101-112.	3.7	10
56	Shakedown boundaries of multilayered thermal barrier systems considering interface imperfections. International Journal of Mechanical Sciences, 2018, 144, 33-40.	6.7	21
5 7	Advances on creep–fatigue damage assessment in notched components. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1854-1867.	3.4	14
58	Recent Developments of the Linear Matching Method Framework for Structural Integrity Assessment. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.6	15
59	Cyclic plasticity behaviors of steam turbine rotor subjected to cyclic thermal and mechanical loads. European Journal of Mechanics, A/Solids, 2017, 66, 243-255.	3.7	23
60	Direct Method on Creep Fatigue Damage Assessment Considering Full Creep-Cyclic Plasticity Interaction. , 2017, , .		0
61	A novel simulation for the design of a low cycle fatigue experimental testing programme. Computers and Structures, 2017, 178, 105-118.	4.4	14
62	Effect of fiber cross section geometry on cyclic plastic behavior of continuous fiber reinforced aluminum matrix composites. European Journal of Mechanics, A/Solids, 2017, 61, 35-46.	3.7	16
63	The Interacting Effect for Collinear Cracks Near Mismatching Bimaterial Interface Under Elastic Creep. Journal of Pressure Vessel Technology, Transactions of the ASME, 2016, 138, .	0.6	2
64	Influences of T-Stress on Constraint Effect in Mismatched Modified Boundary Layer Model for Creep Crack. , 2016, , .		0
65	Review and Case Study of the Linear Matching Method Framework for Structure Integrity Assessment. , 2016, , .		Ο
66	Micromechanical modeling on cyclic plastic behavior of unidirectional fiber reinforced aluminum matrix composites. European Journal of Mechanics, A/Solids, 2016, 59, 155-164.	3.7	13
67	On Creep Fatigue Interaction of Components at Elevated Temperature. Journal of Pressure Vessel Technology, Transactions of the ASME, 2016, 138, .	0.6	18
68	Creep-fatigue behaviour of aluminum alloy-based metal matrix composite. International Journal of Pressure Vessels and Piping, 2016, 139-140, 159-172.	2.6	19
69	Verification of the Linear Matching Method for Limit and Shakedown Analysis by Comparison With Experiments. Journal of Pressure Vessel Technology, Transactions of the ASME, 2015, 137, .	0.6	11
70	Shakedown and Creep Rupture Assessment of a Header Branch Pipe Using the Linear Matching Method. Procedia Engineering, 2015, 130, 1705-1718.	1.2	4
71	A generalised method for ratchet analysis of structures undergoing arbitrary thermoâ€mechanical load histories. International Journal for Numerical Methods in Engineering, 2015, 104, 104-124.	2.8	22
72	Creep rupture assessment by a robust creep data interpolation using the Linear Matching Method. European Journal of Mechanics, A/Solids, 2015, 54, 267-279.	3.7	12

#	Article	IF	CITATIONS
73	On the Modified Monotonic Loading Concept for the Calculation of the Cyclic J-Integral. Journal of Pressure Vessel Technology, Transactions of the ASME, 2015, 137, .	0.6	2
74	On the Creep Fatigue Behavior of Metal Matrix Composites. Procedia Engineering, 2015, 130, 1121-1136.	1.2	8
75	Comparison of the Linear Matching Method to Rolls-Royce's Hierarchical Finite Element Framework for ratchet limit analysis. International Journal of Pressure Vessels and Piping, 2015, 125, 13-22.	2.6	7
76	A Fully Implicit, Lower Bound, Multi-Axial Solution Strategy for Direct Ratchet Boundary Evaluation: Implementation and Comparison. Journal of Pressure Vessel Technology, Transactions of the ASME, 2014, 136, .	0.6	5
77	On the Cyclic J-Integral of a 3D Semi Elliptical Surface Crack. , 2014, , .		О
78	A Direct Method on the Evaluation of Cyclic Steady State of Structures With Creep Effect. Journal of Pressure Vessel Technology, Transactions of the ASME, 2014, 136, .	0.6	21
79	Recent Development and Application of the Linear Matching Method for Design Limits in Plasticity and Creep: An Overview. , 2014, , 257-278.		1
80	Integrated structural analysis tool using the linear matching method part 1 – Software development. International Journal of Pressure Vessels and Piping, 2014, 120-121, 141-151.	2.6	13
81	Integrated structural analysis tool using the Linear Matching Method part 2 – Application and verification. International Journal of Pressure Vessels and Piping, 2014, 120-121, 152-161.	2.6	11
82	The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting. International Journal of Pressure Vessels and Piping, 2014, 113, 32-39.	2.6	20
83	Ratchet Analysis of Structures Under a Generalised Cyclic Load History. , 2014, , .		1
84	Cyclic J-integral using the Linear Matching Method. International Journal of Pressure Vessels and Piping, 2013, 108-109, 72-80.	2.6	7
85	On creep-fatigue endurance of TIG-dressed weldments using the linear matching method. Engineering Failure Analysis, 2013, 34, 308-323.	4.0	15
86	A parametric study on creepâ€fatigue endurance of welded joints. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 73-74.	0.2	4
87	Calculation of a lower bound ratchet limit part 1 – Theory, numerical implementation and verification. European Journal of Mechanics, A/Solids, 2013, 37, 361-368.	3.7	17
88	Calculation of a lower bound ratchet limit part 2 – Application to a pipe intersection with dissimilar material join. European Journal of Mechanics, A/Solids, 2013, 37, 369-378.	3.7	13
89	A parametric study on creep–fatigue strength of welded joints using the linear matching method. International Journal of Fatigue, 2013, 55, 112-125.	5.7	11
90	Creep-fatigue life assessment of cruciform weldments using the linear matching method. International Journal of Pressure Vessels and Piping, 2013, 104, 1-13.	2.6	33

#	Article	IF	CITATIONS
91	Linear Matching Method for Parametric Studies of Weldments Creep-Fatigue Endurance. , 2013, , .		0
92	Verification of the Linear Matching Method for Limit and Shakedown Analysis by Comparison With Experiments. , 2013, , .		0
93	Application of linear matching method to creep–fatigue failure analysis of cruciform weldment manufactured of austenitic steel AISI type 316N(L). Materials Research Innovations, 2013, 17, 337-343.	2.3	2
94	A Fully Implicit, Lower Bound, Multi-Axial Solution Strategy for Direct Ratchet Boundary Evaluation: Theoretical Development. Journal of Pressure Vessel Technology, Transactions of the ASME, 2013, 135, .	0.6	4
95	A New Constitutively Accurate Lower Bound Direct Shakedown Method. , 2013, , .		Ο
96	On the Ratchet Analysis of a Cracked Welded Pipe. Journal of Pressure Vessel Technology, Transactions of the ASME, 2012, 134, .	0.6	5
97	On Shakedown, Ratchet and Limit Analyses of Defective Pipeline. Journal of Pressure Vessel Technology, Transactions of the ASME, 2012, 134, .	0.6	20
98	A Direct Method on the Evaluation of Cyclic Behaviour With Creep Effect. , 2012, , .		1
99	A Fully Implicit, Lower Bound, Multi-Axial Solution Strategy for Direct Ratchet Boundary Evaluation: Theoretical Development. , 2012, , .		1
100	A Fully Implicit, Lower Bound, Multi-Axial Solution Strategy for Direct Ratchet Boundary Evaluation: Implementation and Comparison. , 2012, , .		0
101	Shakedown Analysis of a Composite Cylinder With a Cross-Hole. Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.6	4
102	On the shakedown analysis of welded pipes. International Journal of Pressure Vessels and Piping, 2011, 88, 301-310.	2.6	12
103	Effect of circular holes on the ratchet limit and crack tip plastic strain range in a centre cracked plate. Engineering Fracture Mechanics, 2011, 78, 2310-2324.	4.3	20
104	Shakedown and limit analysis of 90° pipe bends under internal pressure, cyclic in-plane bending and cyclic thermal loading. International Journal of Pressure Vessels and Piping, 2011, 88, 213-222.	2.6	26
105	A Direct Method for the Evaluation of Lower and Upper Bound Ratchet Limits. Procedia Engineering, 2011, 10, 356-361.	1.2	10
106	Limit, Shakedown and Ratchet Analyses of Defective Pipeline Under Internal Pressure and Cyclic Thermal Loading. , 2011, , .		1
107	Ratchet Limits for a Crack in a Welded Pipe Subjected to a Cyclic Temperature Load and a Constant Mechanical Load. , 2011, , .		3
108	Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress. Journal of Pressure Vessel Technology, Transactions of the ASME, 2010, 132, .	0.6	56

#	Article	IF	CITATIONS
109	A Direct Method on the Evaluation of Ratchet Limit. Journal of Pressure Vessel Technology, Transactions of the ASME, 2010, 132, .	0.6	50
110	Shakedown Behaviour of Composite Cylinders With Cross Hole. , 2010, , .		0
111	Structural integrity assessment of superheater outlet penetration tubeplate. International Journal of Pressure Vessels and Piping, 2009, 86, 412-419.	2.6	8
112	Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress. , 2009, , .		0
113	Modeling of the Behavior of a Welded Joint Subjected to Reverse Bending Moment at High Temperature. Journal of Pressure Vessel Technology, Transactions of the ASME, 2007, 129, 254-261.	0.6	10
114	Shakedown analyses for rolling and sliding contact problems. International Journal of Solids and Structures, 2006, 43, 4201-4219.	2.7	36
115	The linear matching method applied to the high temperature life integrity of structures. Part 1. Assessments involving constant residual stress fields. International Journal of Pressure Vessels and Piping, 2006, 83, 123-135.	2.6	48
116	The linear matching method applied to the high temperature life integrity of structures. Part 2. Assessments beyond shakedown involving changing residual stress fields. International Journal of Pressure Vessels and Piping, 2006, 83, 136-147.	2.6	33
117	Linear matching method on the evaluation of plastic and creep behaviours for bodies subjected to cyclic thermal and mechanical loading. International Journal for Numerical Methods in Engineering, 2006, 68, 13-32.	2.8	60
118	Integrity assessment of a 3D tubeplate using the linear matching method. Part 2: Creep relaxation and reverse plasticity. International Journal of Pressure Vessels and Piping, 2005, 82, 95-104.	2.6	10
119	The Linear Matching Method for Shakedown and Limit Analyses Applied to Rolling and Sliding Point Contact Problems. Road Materials and Pavement Design, 2005, 6, 9-30.	4.0	13
120	The Application of the Linear Matching Method to the Life Assessment Method R5: A Comparison. , 2005, , 241.		0
121	Integrity assessment of a 3D tubeplate using the linear matching method. Part 1. Shakedown, reverse plasticity and ratchetting. International Journal of Pressure Vessels and Piping, 2005, 82, 85-94.	2.6	21
122	On the behaviour of a particulate metal matrix composite subjected to cyclic temperature and constant stress. Computational Materials Science, 2005, 34, 425-441.	3.0	24
123	The Linear Matching Method for Shakedown and Limit Analyses Applied to Rolling and Sliding Point Contact Problems. Road Materials and Pavement Design, 2005, 6, 9-30.	4.0	1
124	Fatigue-creep and plastic collapse of notched bars. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 305-318.	3.4	13
125	Integrity assessment for a tubeplate using the linear matching method. International Journal of Pressure Vessels and Piping, 2004, 81, 327-336.	2.6	8
126	A simplified creep-reverse plasticity solution method for bodies subjected to cyclic loading. European Journal of Mechanics, A/Solids, 2004, 23, 561-577.	3.7	6

#	Article	IF	CITATIONS
127	Plastic and Creep Analyses of the Superheater Header Tubeplate Using Linear Matching Method. , 2004, , 133.		1
128	Linear matching method for creep rupture assessment. International Journal of Pressure Vessels and Piping, 2003, 80, 213-220.	2.6	23
129	Application of the Linear Matching Method to the Integrity Assessment for the High Temperature Response of Structures. , 2003, , 3.		3
130	Methods for the Evaluation of Creep Relaxation and the Amplitude of Reverse Plastic Strain for Bodies Subjected to Cyclic Loading. , 2003, , .		1
131	Linear Matching Methods for Shakedown Analysis. Solid Mechanics and Its Applications, 2002, , 203-213.	0.2	0
132	Shakedown and limit analyses for 3-D structures using the linear matching method. International Journal of Pressure Vessels and Piping, 2001, 78, 443-451.	2.6	151
133	Simplified limit analysis of pipelines with multi-defects. Engineering Structures, 2001, 23, 207-213.	5.3	9
134	A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit. European Journal of Mechanics, A/Solids, 2001, 20, 539-553.	3.7	91
135	A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading. European Journal of Mechanics, A/Solids, 2001, 20, 555-571.	3.7	105
136	Plastic collapse analysis of defective pipelines under multi-loading systems. International Journal of Mechanical Sciences, 2000, 42, 1607-1622.	6.7	20
137	Lower and upper bound limit analyses for pipeline with multi-slots of various configurations. International Journal of Pressure Vessels and Piping, 2000, 77, 17-25.	2.6	9
138	On the solution of limit load and reference stress of 3-D structures under multi-loading systems. Engineering Structures, 1999, 21, 530-537.	5.3	18
139	A numerical method for lower bound limit analysis of 3-D structures with multi-loading systems. International Journal of Pressure Vessels and Piping, 1999, 76, 105-112.	2.6	8
140	Numerical analysis of limit load and reference stress of defective pipelines under multi-loading systems. International Journal of Pressure Vessels and Piping, 1998, 75, 105-114.	2.6	15
141	A numerical method for reference stress in the evaluation of structure integrity. International Journal of Pressure Vessels and Piping, 1997, 71, 47-53.	2.6	12
142	Characterizations of material constraint effect for creep crack in center weldment under biaxial loading. International Journal of Fracture, 0, , 1.	2.2	2