
Satoshi P Tsunoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8921758/publications.pdf Version: 2024-02-01

SATOSHI P Τ<u>SUNODA</u>

#	Article	IF	CITATIONS
1	A variety of photoreceptors and the frontiers of optogenetics. Biophysics and Physicobiology, 2022, 19, 1-3.	1.0	0
2	Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump systems. Metabolic Engineering, 2022, 72, 227-236.	7.0	10
3	Molecular Properties and Optogenetic Applications of Enzymerhodopsins. Advances in Experimental Medicine and Biology, 2021, 1293, 153-165.	1.6	9
4	Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin from Klebsormidium nitens. Communications Biology, 2021, 4, 235.	4.4	17
5	TAT Rhodopsin Is an Ultraviolet-Dependent Environmental pH Sensor. Biochemistry, 2021, 60, 899-907.	2.5	9
6	Remote control of neural function by X-ray-induced scintillation. Nature Communications, 2021, 12, 4478.	12.8	50
7	lon transport activity and optogenetics capability of light-driven Na+-pump KR2. PLoS ONE, 2021, 16, e0256728.	2.5	9
8	Structural insights into the mechanism of rhodopsin phosphodiesterase. Nature Communications, 2020, 11, 5605.	12.8	30
9	Novel optogenetics tool: Gt_CCR4, a light-gated cation channel with high reactivity to weak light. Biophysical Reviews, 2020, 12, 453-459.	3.2	13
10	Molecular Properties of New Enzyme Rhodopsins with Phosphodiesterase Activity. ACS Omega, 2020, 5, 10602-10609.	3.5	10
11	A series of commentaries for a symposium entitled "Session 3SDA - Optogenetics: applying photoreceptor for understanding biological phenomena― Biophysical Reviews, 2020, 12, 295-296.	3.2	1
12	Schizorhodopsins: A family of rhodopsins from Asgard archaea that function as light-driven inward H ⁺ pumps. Science Advances, 2020, 6, eaaz2441.	10.3	65
13	Ion Channel Properties of a Cation Channelrhodopsin, Gt_CCR4. Applied Sciences (Switzerland), 2019, 9, 3440.	2.5	19
14	Spectroscopic study of the transmembrane domain of a rhodopsin–phosphodiesterase fusion protein from a unicellular eukaryote. Journal of Biological Chemistry, 2019, 294, 3432-3443.	3.4	22
15	Crystal structure of heliorhodopsin. Nature, 2019, 574, 132-136.	27.8	71
16	Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chemical Reviews, 2018, 118, 10646-10658.	47.7	70
17	Production of a Light-Gated Proton Channel by Replacing the Retinal Chromophore with Its Synthetic Vinylene Derivative. Journal of Physical Chemistry Letters, 2018, 9, 2857-2862.	4.6	12
18	Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS ONE, 2018, 13, e0191802.	2.5	44

Satoshi P Tsunoda

#	Article	IF	CITATIONS
19	A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature, 2018, 558, 595-599.	27.8	190
20	A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. Journal of Biological Chemistry, 2017, 292, 7531-7541.	3.4	74
21	Molecular properties of a DTD channelrhodopsin from <i>Guillardia theta</i> . Biophysics and Physicobiology, 2017, 14, 57-66.	1.0	37
22	Ion Transport Mechanism of the Microbial Rhodopsins Revealed by Electrophysiological Studies. Seibutsu Butsuri, 2017, 57, 179-185.	0.1	0
23	Functional characterization of sodium-pumping rhodopsins with different pumping properties. PLoS ONE, 2017, 12, e0179232.	2.5	26
24	Optogenetic approaches addressing extracellular modulation of neural excitability. Scientific Reports, 2016, 6, 23947.	3.3	34
25	Giant enhancement of fluctuation in small biological systems under external fields. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 054028.	2.3	0
26	A natural light-driven inward proton pump. Nature Communications, 2016, 7, 13415.	12.8	124
27	Functional Mechanism of Channelrhodopsins. Nippon Laser Igakkaishi, 2016, 36, 451-459.	0.0	0
28	Conversion of Channelrhodopsin into a Light-Gated Chloride Channel. Science, 2014, 344, 409-412.	12.6	339
29	Structural Model of Channelrhodopsin. Journal of Biological Chemistry, 2012, 287, 7456-7466.	3.4	39
30	Color-tuned Channelrhodopsins for Multiwavelength Optogenetics. Journal of Biological Chemistry, 2012, 287, 31804-31812.	3.4	147
31	Multicolor optogenetics. Neuroscience Research, 2011, 71, e313.	1.9	0
32	The Microbial Opsin Family of Optogenetic Tools. Cell, 2011, 147, 1446-1457.	28.9	471
33	Glu 87 of Channelrhodopsinâ€l Causes pHâ€dependent Color Tuning and Fast Photocurrent Inactivation ^{â€} . Photochemistry and Photobiology, 2009, 85, 564-569.	2.5	72
34	Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 2008, 11, 631-633.	14.8	490
35	Photoactivation of Channelrhodopsin. Journal of Biological Chemistry, 2008, 283, 1637-1643.	3.4	146
36	Channelrhodopsin-1 Initiates Phototaxis and Photophobic Responses in <i>Chlamydomonas</i> by Immediate Light-Induced Depolarization. Plant Cell, 2008, 20, 1665-1677.	6.6	156

Satoshi P Tsunoda

#	Article	IF	CITATIONS
37	H+-Pumping Rhodopsin from the Marine Alga Acetabularia. Biophysical Journal, 2006, 91, 1471-1479.	0.5	75
38	Probing conformations of the β subunit of F0F1-ATP synthase in catalysis. Biochemical and Biophysical Research Communications, 2006, 342, 800-807.	2.1	31
39	Proton exclusion by an aquaglyceroprotein: a voltage clamp study. Biology of the Cell, 2005, 97, 545-550.	2.0	38
40	Aquaporin-1, Nothing but a Water Channel. Journal of Biological Chemistry, 2004, 279, 11364-11367.	3.4	51
41	Observations of rotation within the FoF1-ATP synthase: deciding between rotation of the Focsubunit ring and artifact. FEBS Letters, 2000, 470, 244-248.	2.8	73
42	Cross-linking of Two \hat{I}^2 Subunits in the Closed Conformation in F1-ATPase. Journal of Biological Chemistry, 1999, 274, 5701-5706.	3.4	41